Beispiel #1
0
    def __init__(self, n_styles=18, opts=None):
        super(ResNetProgressiveBackboneEncoder, self).__init__()

        self.conv1 = nn.Conv2d(opts.input_nc,
                               64,
                               kernel_size=7,
                               stride=2,
                               padding=3,
                               bias=False)
        self.bn1 = BatchNorm2d(64)
        self.relu = PReLU(64)

        resnet_basenet = resnet34(pretrained=True)
        blocks = [
            resnet_basenet.layer1, resnet_basenet.layer2,
            resnet_basenet.layer3, resnet_basenet.layer4
        ]
        modules = []
        for block in blocks:
            for bottleneck in block:
                modules.append(bottleneck)
        self.body = Sequential(*modules)

        self.styles = nn.ModuleList()
        self.style_count = n_styles
        for i in range(self.style_count):
            style = GradualStyleBlock(512, 512, 16)
            self.styles.append(style)
        self.progressive_stage = ProgressiveStage.Inference
Beispiel #2
0
    def __init__(self, num_layers, mode='ir', n_styles=18, opts=None):
        super(ProgressiveBackboneEncoder, self).__init__()
        assert num_layers in [50, 100,
                              152], 'num_layers should be 50,100, or 152'
        assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
        blocks = get_blocks(num_layers)
        if mode == 'ir':
            unit_module = bottleneck_IR
        elif mode == 'ir_se':
            unit_module = bottleneck_IR_SE

        self.input_layer = Sequential(
            Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False),
            BatchNorm2d(64), PReLU(64))
        modules = []
        for block in blocks:
            for bottleneck in block:
                modules.append(
                    unit_module(bottleneck.in_channel, bottleneck.depth,
                                bottleneck.stride))
        self.body = Sequential(*modules)

        self.styles = nn.ModuleList()
        self.style_count = n_styles
        for i in range(self.style_count):
            style = GradualStyleBlock(512, 512, 16)
            self.styles.append(style)
        self.progressive_stage = ProgressiveStage.Inference
    def __init__(self, n_styles=18, opts=None):
        super(ResNetGradualStyleEncoder, self).__init__()

        self.conv1 = nn.Conv2d(opts.input_nc,
                               64,
                               kernel_size=7,
                               stride=2,
                               padding=3,
                               bias=False)
        self.bn1 = BatchNorm2d(64)
        self.relu = PReLU(64)

        resnet_basenet = resnet34(pretrained=True)
        blocks = [
            resnet_basenet.layer1, resnet_basenet.layer2,
            resnet_basenet.layer3, resnet_basenet.layer4
        ]

        modules = []
        for block in blocks:
            for bottleneck in block:
                modules.append(bottleneck)

        self.body = Sequential(*modules)

        self.styles = nn.ModuleList()
        self.style_count = n_styles
        self.coarse_ind = 3
        self.middle_ind = 7
        for i in range(self.style_count):
            if i < self.coarse_ind:
                style = GradualStyleBlock(512, 512, 16)
            elif i < self.middle_ind:
                style = GradualStyleBlock(512, 512, 32)
            else:
                style = GradualStyleBlock(512, 512, 64)
            self.styles.append(style)
        self.latlayer1 = nn.Conv2d(256,
                                   512,
                                   kernel_size=1,
                                   stride=1,
                                   padding=0)
        self.latlayer2 = nn.Conv2d(128,
                                   512,
                                   kernel_size=1,
                                   stride=1,
                                   padding=0)
    def __init__(self, num_layers, mode='ir', n_styles=18, opts=None):
        super(GradualStyleEncoder, self).__init__()
        assert num_layers in [50, 100,
                              152], 'num_layers should be 50,100, or 152'
        assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
        blocks = get_blocks(num_layers)
        if mode == 'ir':
            unit_module = bottleneck_IR
        elif mode == 'ir_se':
            unit_module = bottleneck_IR_SE
        self.input_layer = Sequential(
            Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False),
            BatchNorm2d(64), PReLU(64))
        modules = []
        for block in blocks:
            for bottleneck in block:
                modules.append(
                    unit_module(bottleneck.in_channel, bottleneck.depth,
                                bottleneck.stride))
        self.body = Sequential(*modules)

        self.styles = nn.ModuleList()
        self.style_count = n_styles
        self.coarse_ind = 3
        self.middle_ind = 7
        for i in range(self.style_count):
            if i < self.coarse_ind:
                style = GradualStyleBlock(512, 512, 16)
            elif i < self.middle_ind:
                style = GradualStyleBlock(512, 512, 32)
            else:
                style = GradualStyleBlock(512, 512, 64)
            self.styles.append(style)
        self.latlayer1 = nn.Conv2d(256,
                                   512,
                                   kernel_size=1,
                                   stride=1,
                                   padding=0)
        self.latlayer2 = nn.Conv2d(128,
                                   512,
                                   kernel_size=1,
                                   stride=1,
                                   padding=0)