Beispiel #1
0
    def perform(self):

        for model_description in self.models:
            modelname = model_description['modelname']
            modeltype = model_description['modeltype']
            modelparams = model_description['parameters']

            mpath = self.outputfolder+self.experiment_name+'/models/'+modelname+'/'
            # create folder for model outputs
            if not os.path.exists(mpath):
                os.makedirs(mpath)
            if not os.path.exists(mpath+'results/'):
                os.makedirs(mpath+'results/')

            n_classes = self.Y.shape[1]
            # load respective model
            if modeltype == 'WAVELET':
                from models.wavelet import WaveletModel
                model = WaveletModel(modelname, n_classes, self.sampling_frequency, mpath, self.input_shape, **modelparams)
            elif modeltype == "fastai_model":
                from models.fastai_model import fastai_model
                model = fastai_model(modelname, n_classes, self.sampling_frequency, mpath, self.input_shape, **modelparams)
            elif modeltype == "YOUR_MODEL_TYPE":
                # YOUR MODEL GOES HERE!
                from models.your_model import YourModel
                model = YourModel(modelname, n_classes, self.sampling_frequency, mpath, self.input_shape, **modelparams)
            else:
                assert(True)
                break

            # fit model
            model.fit(self.X_train, self.y_train, self.X_val, self.y_val)
            # predict and dump
            model.predict(self.X_train).dump(mpath+'y_train_pred.npy')
            model.predict(self.X_val).dump(mpath+'y_val_pred.npy')
            model.predict(self.X_test).dump(mpath+'y_test_pred.npy')

        modelname = 'ensemble'
        # create ensemble predictions via simple mean across model predictions (except naive predictions)
        ensemblepath = self.outputfolder+self.experiment_name+'/models/'+modelname+'/'
        # create folder for model outputs
        if not os.path.exists(ensemblepath):
            os.makedirs(ensemblepath)
        if not os.path.exists(ensemblepath+'results/'):
            os.makedirs(ensemblepath+'results/')
        # load all predictions
        ensemble_train, ensemble_val, ensemble_test = [],[],[]
        for model_description in os.listdir(self.outputfolder+self.experiment_name+'/models/'):
            if not model_description in ['ensemble', 'naive']:
                mpath = self.outputfolder+self.experiment_name+'/models/'+model_description+'/'
                ensemble_train.append(np.load(mpath+'y_train_pred.npy', allow_pickle=True))
                ensemble_val.append(np.load(mpath+'y_val_pred.npy', allow_pickle=True))
                ensemble_test.append(np.load(mpath+'y_test_pred.npy', allow_pickle=True))
        # dump mean predictions
        np.array(ensemble_train).mean(axis=0).dump(ensemblepath + 'y_train_pred.npy')
        np.array(ensemble_test).mean(axis=0).dump(ensemblepath + 'y_test_pred.npy')
        np.array(ensemble_val).mean(axis=0).dump(ensemblepath + 'y_val_pred.npy')
    def perform(self):

        for model_description in self.models:
            modelname = model_description['modelname']
            modeltype = model_description['modeltype']
            modelparams = model_description['parameters']

            mpath = self.outputfolder + self.experiment_name + '/models/' + modelname + '/'
            # create folder for model outputs
            if not os.path.exists(mpath):
                os.makedirs(mpath)
            if not os.path.exists(mpath + 'results/'):
                os.makedirs(mpath + 'results/')

            n_classes = self.Y.shape[1]
            # load respective model
            if modeltype == 'WAVELET':
                from models.wavelet import WaveletModel
                model = WaveletModel(modelname, n_classes,
                                     self.sampling_frequency, mpath,
                                     self.input_shape, **modelparams)
            elif modeltype == "fastai_model":
                from models.fastai_model import fastai_model
                model = fastai_model(modelname, n_classes,
                                     self.sampling_frequency, mpath,
                                     self.input_shape, **modelparams)
            elif modeltype == "NET1D":
                # YOUR MODEL GOES HERE!
                from models.your_model import YourModel
                model = YourModel(modelname, n_classes,
                                  self.sampling_frequency, mpath,
                                  self.input_shape, **modelparams)
            elif modeltype == "NET1D_ICBEB":
                # YOUR MODEL GOES HERE!
                from models.your_model_icbeb import YourModel_ICBEB
                model = YourModel_ICBEB(modelname, n_classes,
                                        self.sampling_frequency, mpath,
                                        self.input_shape, **modelparams)
            else:
                assert (True)
                break
            print(self.X_train.shape, self.y_train.shape)
            # fit model
            model.fit(self.X_train, self.y_train, self.X_val, self.y_val,
                      self.pid_val)
            # predict and dump
            # model.predict(self.X_train).dump(mpath+'y_train_pred.npy')
            model.predict(self.X_val,
                          self.pid_val).dump(mpath + 'y_val_pred.npy')
            model.predict(self.X_test,
                          self.pid_test).dump(mpath + 'y_test_pred.npy')