omniglot_database = OmniglotDatabase(random_seed=47, num_train_classes=1200, num_val_classes=100) shape = (28, 28, 1) latent_dim = 20 omniglot_encoder = get_encoder(latent_dim) omniglot_decoder = get_decoder(latent_dim) omniglot_parser = OmniglotParser(shape=shape) vae = VAE( 'omniglot', image_shape=shape, latent_dim=latent_dim, database=omniglot_database, parser=omniglot_parser, encoder=omniglot_encoder, decoder=omniglot_decoder, visualization_freq=5, learning_rate=0.001, ) vae.perform_training(epochs=1000, checkpoint_freq=100) vae.load_latest_checkpoint() # vae.visualize_meta_learning_task() maml_vae = MAML_VAE(vae=vae, database=omniglot_database, latent_algorithm='p1', network_cls=SimpleModel, n=5, k=1,
# import tensorflow as tf # tf.config.experimental_run_functions_eagerly(True) voxceleb_database = VoxCelebDatabase() shape = (16000, 1) latent_dim = 20 voxceleb_encoder = get_encoder(latent_dim) voxceleb_decoder = get_decoder(latent_dim) voxceleb_parser = VoxCelebParser(shape=shape) vae = VAE( 'voxceleb', image_shape=shape, latent_dim=latent_dim, database=voxceleb_database, parser=voxceleb_parser, encoder=voxceleb_encoder, decoder=voxceleb_decoder, visualization_freq=1, learning_rate=0.001, ) vae.perform_training(epochs=1000, checkpoint_freq=100, vis_callback_cls=AudioCallback) vae.load_latest_checkpoint() # vae.visualize_meta_learning_task() maml_vae = MAML_VAE( vae=vae, database=voxceleb_database, network_cls=SimpleModel, n=5, k=1,
# import tensorflow as tf # tf.config.experimental_run_functions_eagerly(True) celebalot_database = CelebADatabase() shape = (84, 84, 3) latent_dim = 500 celebalot_encoder = get_encoder(latent_dim) celebalot_decoder = get_decoder(latent_dim) celebalot_parser = CelebAParser(shape=shape) vae = VAE( 'celeba', image_shape=shape, latent_dim=latent_dim, database=celebalot_database, parser=celebalot_parser, encoder=celebalot_encoder, decoder=celebalot_decoder, visualization_freq=1, learning_rate=0.001, ) # vae.perform_training(epochs=20, checkpoint_freq=100) vae.load_latest_checkpoint() # vae.visualize_meta_learning_task() maml_vae = MAMLVAECelebA(vae=vae, latent_algorithm='p3', database=celebalot_database, network_cls=MiniImagenetModel, n=2, k=1,