assert exists(vae_file), "No trained VAE in the originallogdir..."
state = torch.load(vae_file, map_location={'cuda:0': str(device)})
print("Loading VAE at epoch {} "
      "with test error {}".format(state['epoch'], state['precision']))
vae = VAE(3, LSIZE).to(device)
vae.load_state_dict(state['state_dict'])
vae_optimizer = torch.optim.Adam(vae.parameters())
vae_scheduler = ReduceLROnPlateau(vae_optimizer, 'min', factor=0.5, patience=5)

# Load RNN
rnn_dir = join(args.originallogdir, 'mdrnn')
rnn_file = join(rnn_dir, 'best.tar')
assert exists(rnn_file), 'No trained MDNRNN in the originallogdir...'
mdrnn = MDRNN(LSIZE, ASIZE, RSIZE, 5)
mdrnn.to(device)
mdrnn_optimizer = torch.optim.RMSprop(mdrnn.parameters(), lr=1e-3, alpha=.9)
mdrnn_scheduler = ReduceLROnPlateau(mdrnn_optimizer,
                                    'min',
                                    factor=0.5,
                                    patience=5)

rnn_state = torch.load(rnn_file, map_location={'cuda:0': str(device)})
print("Loading MDRNN at epoch {} "
      "with test error {}".format(rnn_state["epoch"], rnn_state["precision"]))
mdrnn.load_state_dict(rnn_state["state_dict"])


def collation_fn(rollouts):
    rollout_items = [[], [], [], [], []]
    for rollout in rollouts:
        for i in range(len(rollout)):
Beispiel #2
0
      "with test error {}".format(
          state['epoch'], state['precision']))

vae = VAE(3, LSIZE).to(device)
vae.load_state_dict(state['state_dict'])

# Loading model
rnn_dir = join(args.logdir, 'mdrnn')
rnn_file = join(rnn_dir, 'best.tar')

if not exists(rnn_dir):
    mkdir(rnn_dir)

mdrnn = MDRNN(LSIZE, ASIZE, RSIZE, 5)
mdrnn.to(device)
optimizer = torch.optim.RMSprop(mdrnn.parameters(), lr=1e-3, alpha=.9)
scheduler = ReduceLROnPlateau(optimizer, 'min', factor=0.5, patience=5)
earlystopping = EarlyStopping('min', patience=30)


if exists(rnn_file) and not args.noreload:
    rnn_state = torch.load(rnn_file)
    print("Loading MDRNN at epoch {} "
          "with test error {}".format(
              rnn_state["epoch"], rnn_state["precision"]))
    mdrnn.load_state_dict(rnn_state["state_dict"])
    optimizer.load_state_dict(rnn_state["optimizer"])
    scheduler.load_state_dict(state['scheduler'])
    earlystopping.load_state_dict(state['earlystopping'])

Beispiel #3
0
epochs = 3000
torch.backends.cudnn.benchmark = True
learning_rate = 1e-4
# Loading model

rnn_dir = join(args.logdir, 'mdrnn')
rnn_file = join(rnn_dir, 'best.tar')

if not exists(rnn_dir):
    mkdir(rnn_dir)

mdrnn = MDRNN(LSIZE, ASIZE, RSIZE, 5)
mdrnn = torch.nn.DataParallel(mdrnn, device_ids=[1, 2, 3, 4, 5, 6, 7])
mdrnn.cuda(1)
#mdrnn.to(device)
optimizer = optim.Adam(mdrnn.parameters(), lr=1e-4, betas=(0.9, 0.999))
# scheduler = ReduceLROnPlateau(optimizer, 'min', factor=0.5, patience=5)
# earlystopping = EarlyStopping('min', patience=30)

if exists(rnn_file) and not args.noreload:
    rnn_state = torch.load(rnn_file)
    print("Loading MDRNN at epoch {} "
          "with test error {}".format(rnn_state["epoch"],
                                      rnn_state["precision"]))
    mdrnn.load_state_dict(rnn_state["state_dict"])
    optimizer.load_state_dict(rnn_state["optimizer"])
    # scheduler.load_state_dict(state['scheduler'])
    # earlystopping.load_state_dict(state['earlystopping'])

# Data Loading
train_loader = DataLoader(_RolloutDataset('datasets/carracing2_rnn',
                   v_dataset_test,
                   v_optimizer,
                   v_scheduler,
                   v_earlystopping,
                   skip_train=True,
                   max_train_epochs=1000)

# hardmaru 는 rollout 10k, epoch=10 으로 vae 트레이닝을 끝냈다.
# ctellec 은 rollout 1k, max epoch=1000 이나 줬는데, 100이면 충분한게 아니었나 싶다.

# 3-1. MDN-RNN를 train할 (random) dataset 생성
m_dataset_train, m_dataset_test = make_mdrnn_dataset(rollout_root_dir)

# 3-2. MDN-RNN 모델(M) 생성
m_model = MDRNN(LSIZE, ASIZE, RSIZE, 5).to(device)  #  pipaek : why gaussian=5?
m_optimizer = torch.optim.RMSprop(m_model.parameters(), lr=1e-3,
                                  alpha=.9)  # pipaek : hardmaru 는 lr=1e-4 이다.
m_scheduler = ReduceLROnPlateau(m_optimizer, 'min', factor=0.5, patience=5)
m_earlystopping = EarlyStopping('min', patience=30)  # patience 30 -> 5

# 3-3. MDN-RNN 모델(M) 훈련
m_model_train_proc(rnn_dir,
                   m_model,
                   v_model,
                   m_dataset_train,
                   m_dataset_test,
                   m_optimizer,
                   m_scheduler,
                   m_earlystopping,
                   skip_train=True,
                   max_train_epochs=30)
Beispiel #5
0
def train_mdrnn(logdir, traindir, epochs=10, testdir=None):
    BSIZE = 80 # maybe should change this back to their initial one of 16
    noreload = False #Best model is not reloaded if specified
    SEQ_LEN = 32
    epochs = int(epochs)

    testdir = testdir if testdir else traindir
    cuda = torch.cuda.is_available()

    torch.manual_seed(123)
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')


    # Loading VAE
    vae_file = join(logdir, 'vae', 'best.tar')
    assert exists(vae_file), "No trained VAE in the logdir..."
    state = torch.load(vae_file)
    print("Loading VAE at epoch {} "
          "with test error {}".format(
              state['epoch'], state['precision']))

    vae = VAE(3, LSIZE).to(device)
    vae.load_state_dict(state['state_dict'])

    # Loading model
    rnn_dir = join(logdir, 'mdrnn')
    rnn_file = join(rnn_dir, 'best.tar')

    if not exists(rnn_dir):
        mkdir(rnn_dir)

    mdrnn = MDRNN(LSIZE, ASIZE, RSIZE, 5)
    mdrnn.to(device)
    optimizer = torch.optim.RMSprop(mdrnn.parameters(), lr=1e-3, alpha=.9)
    scheduler = ReduceLROnPlateau(optimizer, 'min', factor=0.5, patience=5)
    earlystopping = EarlyStopping('min', patience=30)


    if exists(rnn_file) and not noreload:
        rnn_state = torch.load(rnn_file)
        print("Loading MDRNN at epoch {} "
              "with test error {}".format(
                  rnn_state["epoch"], rnn_state["precision"]))
        mdrnn.load_state_dict(rnn_state["state_dict"])
        optimizer.load_state_dict(rnn_state["optimizer"])
        scheduler.load_state_dict(state['scheduler'])
        earlystopping.load_state_dict(state['earlystopping'])


    # Data Loading
    transform = transforms.Lambda(
        lambda x: np.transpose(x, (0, 3, 1, 2)) / 255)
    train_loader = DataLoader(
        RolloutSequenceDataset(traindir, SEQ_LEN, transform, buffer_size=30),
        batch_size=BSIZE, num_workers=8, shuffle=True)
    test_loader = DataLoader(
        RolloutSequenceDataset(testdir, SEQ_LEN, transform, train=False, buffer_size=10),
        batch_size=BSIZE, num_workers=8)

    def to_latent(obs, next_obs):
        """ Transform observations to latent space.

        :args obs: 5D torch tensor (BSIZE, SEQ_LEN, ASIZE, SIZE, SIZE)
        :args next_obs: 5D torch tensor (BSIZE, SEQ_LEN, ASIZE, SIZE, SIZE)

        :returns: (latent_obs, latent_next_obs)
            - latent_obs: 4D torch tensor (BSIZE, SEQ_LEN, LSIZE)
            - next_latent_obs: 4D torch tensor (BSIZE, SEQ_LEN, LSIZE)
        """
        with torch.no_grad():
            obs, next_obs = [
                f.upsample(x.view(-1, 3, SIZE, SIZE), size=RED_SIZE,
                           mode='bilinear', align_corners=True)
                for x in (obs, next_obs)]

            (obs_mu, obs_logsigma), (next_obs_mu, next_obs_logsigma) = [
                vae(x)[1:] for x in (obs, next_obs)]

            latent_obs, latent_next_obs = [
                (x_mu + x_logsigma.exp() * torch.randn_like(x_mu)).view(BSIZE, SEQ_LEN, LSIZE)
                for x_mu, x_logsigma in
                [(obs_mu, obs_logsigma), (next_obs_mu, next_obs_logsigma)]]
        return latent_obs, latent_next_obs

    def get_loss(latent_obs, action, reward, terminal, latent_next_obs):
        """ Compute losses.

        The loss that is computed is:
        (GMMLoss(latent_next_obs, GMMPredicted) + MSE(reward, predicted_reward) +
             BCE(terminal, logit_terminal)) / (LSIZE + 2)
        The LSIZE + 2 factor is here to counteract the fact that the GMMLoss scales
        approximately linearily with LSIZE. All losses are averaged both on the
        batch and the sequence dimensions (the two first dimensions).

        :args latent_obs: (BSIZE, SEQ_LEN, LSIZE) torch tensor
        :args action: (BSIZE, SEQ_LEN, ASIZE) torch tensor
        :args reward: (BSIZE, SEQ_LEN) torch tensor
        :args latent_next_obs: (BSIZE, SEQ_LEN, LSIZE) torch tensor

        :returns: dictionary of losses, containing the gmm, the mse, the bce and
            the averaged loss.
        """
        latent_obs, action,\
            reward, terminal,\
            latent_next_obs = [arr.transpose(1, 0)
                               for arr in [latent_obs, action,
                                           reward, terminal,
                                           latent_next_obs]]
        mus, sigmas, logpi, rs, ds = mdrnn(action, latent_obs)
        gmm = gmm_loss(latent_next_obs, mus, sigmas, logpi)
        bce = f.binary_cross_entropy_with_logits(ds, terminal)
        mse = f.mse_loss(rs, reward)
        loss = (gmm + bce + mse) / (LSIZE + 2)
        return dict(gmm=gmm, bce=bce, mse=mse, loss=loss)


    def data_pass(epoch, train): # pylint: disable=too-many-locals
        """ One pass through the data """
        if train:
            mdrnn.train()
            loader = train_loader
        else:
            mdrnn.eval()
            loader = test_loader

        loader.dataset.load_next_buffer()

        cum_loss = 0
        cum_gmm = 0
        cum_bce = 0
        cum_mse = 0

        pbar = tqdm(total=len(loader.dataset), desc="Epoch {}".format(epoch))
        for i, data in enumerate(loader):
            obs, action, reward, terminal, next_obs = [arr.to(device) for arr in data]

            # transform obs
            latent_obs, latent_next_obs = to_latent(obs, next_obs)

            if train:
                losses = get_loss(latent_obs, action, reward,
                                  terminal, latent_next_obs)

                optimizer.zero_grad()
                losses['loss'].backward()
                optimizer.step()
            else:
                with torch.no_grad():
                    losses = get_loss(latent_obs, action, reward,
                                      terminal, latent_next_obs)

            cum_loss += losses['loss'].item()
            cum_gmm += losses['gmm'].item()
            cum_bce += losses['bce'].item()
            cum_mse += losses['mse'].item()

            pbar.set_postfix_str("loss={loss:10.6f} bce={bce:10.6f} "
                                 "gmm={gmm:10.6f} mse={mse:10.6f}".format(
                                     loss=cum_loss / (i + 1), bce=cum_bce / (i + 1),
                                     gmm=cum_gmm / LSIZE / (i + 1), mse=cum_mse / (i + 1)))
            pbar.update(BSIZE)
        pbar.close()
        return cum_loss * BSIZE / len(loader.dataset)

    train = partial(data_pass, train=True)
    test = partial(data_pass, train=False)

    for e in range(epochs):
        cur_best = None
        train(e)
        test_loss = test(e)
        scheduler.step(test_loss)
        earlystopping.step(test_loss)

        is_best = not cur_best or test_loss < cur_best
        if is_best:
            cur_best = test_loss
        checkpoint_fname = join(rnn_dir, 'checkpoint.tar')
        save_checkpoint({
            "state_dict": mdrnn.state_dict(),
            "optimizer": optimizer.state_dict(),
            'scheduler': scheduler.state_dict(),
            'earlystopping': earlystopping.state_dict(),
            "precision": test_loss,
            "epoch": e}, is_best, checkpoint_fname,
                        rnn_file)

        if earlystopping.stop:
            print("End of Training because of early stopping at epoch {}".format(e))
            break
Beispiel #6
0
    def test_mdrnn_learning(self):
        num_epochs = 300
        num_episodes = 400
        batch_size = 200
        action_dim = 2
        seq_len = 5
        state_dim = 2
        simulated_num_gaussian = 2
        mdrnn_num_gaussian = 2
        simulated_hidden_size = 3
        mdrnn_hidden_size = 10
        mdrnn_hidden_layer = 1
        adam_lr = 0.01
        cur_state_mem = numpy.zeros((num_episodes, seq_len, state_dim))
        next_state_mem = numpy.zeros((num_episodes, seq_len, state_dim))
        action_mem = numpy.zeros((num_episodes, seq_len, action_dim))
        reward_mem = numpy.zeros((num_episodes, seq_len))
        terminal_mem = numpy.zeros((num_episodes, seq_len))
        next_mus_mem = numpy.zeros(
            (num_episodes, seq_len, simulated_num_gaussian, state_dim))

        swm = SimulatedWorldModel(
            action_dim=action_dim,
            state_dim=state_dim,
            num_gaussian=simulated_num_gaussian,
            lstm_num_layer=1,
            lstm_hidden_dim=simulated_hidden_size,
        )

        actions = torch.eye(action_dim)
        for e in range(num_episodes):
            swm.init_hidden(batch_size=1)
            next_state = torch.randn((1, 1, state_dim))
            for s in range(seq_len):
                cur_state = next_state

                action = torch.tensor(
                    actions[numpy.random.randint(action_dim)]).view(
                        1, 1, action_dim)
                next_mus, reward = swm(action, cur_state)
                terminal = 0
                if s == seq_len - 1:
                    terminal = 1

                next_pi = torch.ones(
                    simulated_num_gaussian) / simulated_num_gaussian
                index = Categorical(next_pi).sample((1, )).long().item()
                next_state = next_mus[0, 0, index].view(1, 1, state_dim)

                print(
                    "{} cur_state: {}, action: {}, next_state: {}, reward: {}, terminal: {}"
                    .format(e, cur_state, action, next_state, reward,
                            terminal))
                print("next_pi: {}, sampled index: {}".format(next_pi, index))
                print("next_mus:", next_mus, "\n")

                cur_state_mem[e, s, :] = cur_state.detach().numpy()
                action_mem[e, s, :] = action.numpy()
                reward_mem[e, s] = reward.detach().numpy()
                terminal_mem[e, s] = terminal
                next_state_mem[e, s, :] = next_state.detach().numpy()
                next_mus_mem[e, s, :, :] = next_mus.detach().numpy()

        mdrnn = MDRNN(
            latents=state_dim,
            actions=action_dim,
            gaussians=mdrnn_num_gaussian,
            hiddens=mdrnn_hidden_size,
            layers=mdrnn_hidden_layer,
        )
        mdrnn.train()
        optimizer = torch.optim.Adam(mdrnn.parameters(), lr=adam_lr)
        num_batch = num_episodes // batch_size
        earlystopping = EarlyStopping('min', patience=30)

        cum_loss = []
        cum_gmm = []
        cum_bce = []
        cum_mse = []
        for e in range(num_epochs):
            for i in range(0, num_batch):
                mdrnn.init_hidden(batch_size=batch_size)
                optimizer.zero_grad()
                sample_indices = numpy.random.randint(num_episodes,
                                                      size=batch_size)

                obs, action, reward, terminal, next_obs = \
                    cur_state_mem[sample_indices], \
                    action_mem[sample_indices], \
                    reward_mem[sample_indices], \
                    terminal_mem[sample_indices], \
                    next_state_mem[sample_indices]
                obs, action, reward, terminal, next_obs = \
                    torch.tensor(obs, dtype=torch.float), \
                    torch.tensor(action, dtype=torch.float), \
                    torch.tensor(reward, dtype=torch.float), \
                    torch.tensor(terminal, dtype=torch.float), \
                    torch.tensor(next_obs, dtype=torch.float)

                print("learning at epoch {} step {} best score {} counter {}".
                      format(e, i, earlystopping.best,
                             earlystopping.num_bad_epochs))
                losses = self.get_loss(obs, action, reward, terminal, next_obs,
                                       state_dim, mdrnn)
                losses['loss'].backward()
                optimizer.step()

                cum_loss += [losses['loss'].item()]
                cum_gmm += [losses['gmm'].item()]
                cum_bce += [losses['bce'].item()]
                cum_mse += [losses['mse'].item()]
                print(
                    "loss={loss:10.6f} bce={bce:10.6f} gmm={gmm:10.6f} mse={mse:10.6f}"
                    .format(
                        loss=losses['loss'],
                        bce=losses['bce'],
                        gmm=losses['gmm'],
                        mse=losses['mse'],
                    ))
                print(
                    "cum loss={loss:10.6f} cum bce={bce:10.6f} cum gmm={gmm:10.6f} cum mse={mse:10.6f}"
                    .format(
                        loss=numpy.mean(cum_loss),
                        bce=numpy.mean(cum_bce),
                        gmm=numpy.mean(cum_gmm),
                        mse=numpy.mean(cum_mse),
                    ))

                print()

            earlystopping.step(numpy.mean(cum_loss[-num_batch:]))
            if numpy.mean(cum_loss[-num_batch:]) < -3. and earlystopping.stop:
                break

        assert numpy.mean(cum_loss[-num_batch:]) < -3.

        sample_indices = [0]
        mdrnn.init_hidden(batch_size=len(sample_indices))
        mdrnn.eval()
        obs, action, reward, terminal, next_obs = \
            cur_state_mem[sample_indices], \
            action_mem[sample_indices], \
            reward_mem[sample_indices], \
            terminal_mem[sample_indices], \
            next_state_mem[sample_indices]
        obs, action, reward, terminal, next_obs = \
            torch.tensor(obs, dtype=torch.float), \
            torch.tensor(action, dtype=torch.float), \
            torch.tensor(reward, dtype=torch.float), \
            torch.tensor(terminal, dtype=torch.float), \
            torch.tensor(next_obs, dtype=torch.float)
        transpose_obs, transpose_action, transpose_reward, transpose_terminal, transpose_next_obs = \
            self.transpose(obs, action, reward, terminal, next_obs)
        mus, sigmas, logpi, rs, ds = mdrnn(transpose_action, transpose_obs)
        pi = torch.exp(logpi)
        gl = gmm_loss(transpose_next_obs, mus, sigmas, logpi)
        print(gl)

        print()