Beispiel #1
0
def live_detection(database, threshold):

    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    print('Running on device: {}'.format(device))

    mtcnn = MTCNN(image_size=160,
                  margin=0,
                  min_face_size=20,
                  thresholds=[0.6, 0.7, 0.7],
                  factor=0.709,
                  post_process=True,
                  device=device)

    resnet = InceptionResnetV1(pretrained='vggface2').eval().to(device)

    with open(database, "rb") as pkl_in:
        database = pickle.load(pkl_in)

    embeddings_set, id_to_name = database

    cap = cv2.VideoCapture(0)

    # Check if the webcam is opened correctly
    if not cap.isOpened():
        raise IOError("Cannot open webcam")

    while True:
        ret, frame = cap.read()
        rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

        try:
            face = mtcnn(rgb)
            c, _ = mtcnn.detect(rgb)
            c = c.flatten().tolist()
            embeddings = resnet(face.unsqueeze(0).to(device)).detach()
            if embeddings is not None:
                index = (embeddings_set -
                         embeddings).norm(dim=-1).argmin().item()
                dist = (embeddings_set - embeddings).norm(dim=-1).min().item()
                if dist < threshold:
                    name = id_to_name[index]
                else:
                    name = "Unknown"

            cv2.rectangle(frame, (int(c[0]), int(c[1])),
                          (int(c[2]), int(c[3])), (0, 0, 255), 2)
            cv2.putText(frame, name, (int(c[0]) - 120, int(c[1]) - 10),
                        cv2.FONT_HERSHEY_TRIPLEX, 1.0, [0, 0, 255], 2, 1)
        except Exception:
            pass

        cv2.imshow('Input', frame)

        c = cv2.waitKey(1)
        if c == 27:
            break

    cap.release()
    cv2.destroyAllWindows()
Beispiel #2
0
def test():
    model = FECNet()
    model.load_state_dict(torch.load('data/FECNet.pt'))
    model.eval()
    with torch.no_grad():
        test_path = "/data00/chenriwei/PublicData/FaceData/RAF/RAF"
        with open("feature2.txt", 'w') as fout:
            idx = 1
            for filename in os.listdir(test_path):
                full_path = os.path.join(test_path, filename)
                try:
                    img = Image.open(full_path)
                    channels = img.split()
                    if len(channels) != 3:
                        continue
                    r, g, b = channels
                    img = Image.merge("RGB", (b, g, r))
                    mtcnn = MTCNN(image_size=224)
                except:
                    # ignore all exception
                    continue
                face, prob = mtcnn(img, return_prob=True)
                idx += 1
                face = np.array(face)
                if face.any():
                    face = torch.Tensor(face).view(1, 3, 224, 224)
                    Embedding = model(face.cuda()).cpu()
                    fout.write("{}\t{}\n".format(filename,
                                                 list(
                                                     Embedding[0, :].numpy())))
def embedding(file_name):
  import PIL.Image as Image
  from models.mtcnn import MTCNN
  from models.inception_resnet_v1 import InceptionResnetV1
  workers = 10
  #device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
  device = torch.device('cpu')
  mtcnn = MTCNN(image_size=160, margin=0, min_face_size=20,
  thresholds=[0.6,0.7,0.7], factor=0.709, post_process=True, device=device)
  resnet = InceptionResnetV1(pretrained='casia_webface').eval().to(device)

  crop_imgs = []
  labels = []
  with open (file_name, 'rt') as file:
    for line in file:
      l = line.strip('\n').split('	')
      path = l[0]
      labels.append(l[1])
      x = Image.open(path)
      x_aligned, prob = mtcnn(x, return_prob=True)
      crop_imgs.append(x_aligned)

  print('total', len(crop_imgs),'images read!')

  embeddings = []

  if len(crop_imgs)%100==0 and len(crop_imgs)>=100:
    for i in range(len(crop_imgs)//100):  
      em = resnet(torch.stack(crop_imgs[i*100:100*(i+1)]).to(device)).detach().cpu()
      embeddings+=em

  else:
    for i in range(len(crop_imgs)):  
      em = resnet(torch.stack(crop_imgs).to(device)).detach().cpu()
      embeddings+=em

  return embeddings, labels
Beispiel #4
0
import sys
from PIL import Image
import torch

sys.path.append('./')

from models.mtcnn import MTCNN  # noqa

if __name__ == "__main__":
    mtcnn = MTCNN()
    # print('mtcnn:{}'.format(mtcnn))
    img_path = './data/predict_images/02huangxuan/timg.jpg'
    save_path = './data/predict_images/02huangxuan/timg_cropped.jpg'
    # img_path = './data/CASIA-FaceV5/test/009_0.bmp'
    # save_path = './data/CASIA-FaceV5/test/009_0_cropped.bmp'
    resnet = torch.load(
        './data/test_data/test_model/vggface2_finetune.pt').eval()
    # print('resnet:{}'.format(resnet))
    img = Image.open(img_path)
    # Get cropped and prewhitened image tensor
    img_cropped = mtcnn(img, save_path=save_path)
    # Calculate embedding (unsqueeze to add batch dimension)
    img_embedding = resnet(img_cropped.unsqueeze(0))
    # Or, if using for VGGFace2 classification
    resnet.classify = True
    img_probs = resnet(img_cropped.unsqueeze(0))
    probs = torch.nn.functional.softmax(img_probs, dim=-1)
    print('probs:{}'.format(probs))
    print('img_probs:{}'.format(probs.max(dim=1)))
    # dataset.classes:['01jay', '02huangxuan', '03liudehua', '04zhangxueyou', '05zengxiaoxian', 'angelina_jolie', 'bradley_cooper', 'kate_siegel', 'paul_rudd', 'shea_whigham']
    # dataset.class_to_idx:{'01jay': 0, '02huangxuan': 1, '03liudehua': 2, '04zhangxueyou': 3, '05zengxiaoxian': 4, 'angelina_jolie': 5, 'bradley_cooper': 6, 'kate_siegel': 7, 'paul_rudd': 8, 'shea_whigham': 9}
Beispiel #5
0
def get_image(path, trans):
    img = Image.open(path)
    img = trans(img)
    return img


trans = transforms.Compose([transforms.Resize(512)])

trans_cropped = transforms.Compose(
    [np.float32, transforms.ToTensor(), prewhiten])

dataset = datasets.ImageFolder('data/test_images', transform=trans)
dataset.idx_to_class = {k: v for v, k in dataset.class_to_idx.items()}
loader = DataLoader(dataset, collate_fn=lambda x: x[0])

mtcnn_pt = MTCNN(device=torch.device('cpu'))

names = []
aligned = []
aligned_fromfile = []
for img, idx in loader:
    name = dataset.idx_to_class[idx]
    start = time()
    img_align = mtcnn_pt(
        img, save_path='data/test_images_aligned/{}/1.png'.format(name))
    print('MTCNN time: {:6f} seconds'.format(time() - start))

    if img_align is not None:
        names.append(name)
        aligned.append(img_align)
        aligned_fromfile.append(
Beispiel #6
0
from torchvision import datasets
<<<<<<< HEAD
from annoy import AnnoyIndex
=======
>>>>>>> 30e0e67433fc362377061a0234b20899c571efe5
from tqdm import tqdm
import torch
import json

# Define device
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

# Define Model
mtcnn = MTCNN(
    image_size=160, margin=0, min_face_size=20,
    thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=True,
    device=device
)

resnet = InceptionResnetV1(pretrained='vggface2').eval().to(device)

# Define annoy dimention
tree = AnnoyIndex(512, 'euclidean')

# Extrac fetrue from images
dataset = datasets.ImageFolder('./data/images')
dataset.idx_to_class = {i:c for c, i in dataset.class_to_idx.items()}

faces_aligned = []
names = []
for x, y in tqdm(dataset):
Beispiel #7
0
    img = Image.open(path)
    img = trans(img)
    return img


trans = transforms.Compose([
    transforms.Resize(512)
])

trans_cropped = transforms.Compose([
    np.float32,
    transforms.ToTensor(),
    prewhiten
])

mtcnn_pt = MTCNN()
resnet_pt = InceptionResnetV1(pretrained='vggface2').eval()

dataset = datasets.ImageFolder('data/test_images', transform=trans)
dataset.idx_to_class = {k: v for v, k in dataset.class_to_idx.items()}
loader = DataLoader(dataset, num_workers=8, collate_fn=lambda x: x[0])

names = []
aligned = []
aligned_fromfile = []
for img, idx in loader:
    name = dataset.idx_to_class[idx]
    names.append(name)
    start = time()
    img_align = mtcnn_pt(img, save_path='data/test_images_aligned/{}/1.png'.format(name))
    print('MTCNN time: {:6f} seconds'.format(time() - start))
Beispiel #8
0
import tornado.ioloop
import tornado.web
import json
from tornado.escape import json_decode
from models.mtcnn import MTCNN
from models.inception_resnet_v1 import InceptionResnetV1
from FaceRecognition import cosSimilarity, getVec
from utils import getConnection

define("port", default=8080, help="run on the given port", type=int)
tornado.options.parse_command_line()

BASE_DIR = os.path.dirname(__file__)

# FaceNet
mtcnn = MTCNN(image_size=160, margin=10)
resnet = InceptionResnetV1().eval()


class MainHandler(tornado.web.RequestHandler):
    def get(self):
        self.render("index.html")

    def post(self):
        self.render("index.html")


class FaceRecognitionHandler(tornado.web.RequestHandler):
    def get(self):
        pass
Beispiel #9
0
def main(args):
    device = 'cuda'
    sleep(random.random())
    output_dir = os.path.expanduser(args.output_dir)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    dataset = get_dataset(args.input_dir)

    print('Creating networks and loading parameters')

    mtcnn = MTCNN(min_face_size=20,
                  thresholds=[0.6, 0.7, 0.7],
                  factor=0.709,
                  device=device)

    # Add a random key to the filename to allow alignment using multiple processes
    random_key = np.random.randint(0, high=99999)
    bounding_boxes_filename = os.path.join(
        output_dir, 'bounding_boxes_%05d.txt' % random_key)

    with open(bounding_boxes_filename, "w") as text_file:
        nrof_images_total = 0
        nrof_successfully_aligned = 0
        if args.random_order:
            random.shuffle(dataset)
        for cls in dataset:
            output_class_dir = os.path.join(output_dir, cls.name)
            if not os.path.exists(output_class_dir):
                os.makedirs(output_class_dir)
                if args.random_order:
                    random.shuffle(cls.image_paths)
            for image_path in cls.image_paths:
                nrof_images_total += 1
                filename = os.path.splitext(os.path.split(image_path)[1])[0]
                output_filename = os.path.join(output_class_dir,
                                               filename + '.png')
                print(image_path)
                if not os.path.exists(output_filename):
                    try:
                        # img = misc.imread(image_path)
                        img = Image.open(image_path)
                        img = np.asarray(img)
                    except (IOError, ValueError, IndexError) as e:
                        errorMessage = '{}: {}'.format(image_path, e)
                        print(errorMessage)
                    else:
                        if img.ndim < 2:
                            print('Unable to align "%s"' % image_path)
                            text_file.write('%s\n' % (output_filename))
                            continue
                        if img.ndim == 2:
                            img = to_rgb(img)
                        img = img[:, :, 0:3]

                        bounding_boxes, _ = mtcnn.detect(img, landmarks=False)

                        if bounding_boxes is not None:
                            nrof_faces = bounding_boxes.shape[0]
                            det = bounding_boxes[:, 0:4]
                            det_arr = []
                            img_size = np.asarray(img.shape)[0:2]
                            if nrof_faces > 1:  # if there are multiple faces, it will choose the face that closed to center
                                if args.detect_multiple_faces:
                                    for i in range(nrof_faces):
                                        det_arr.append(np.squeeze(det[i]))
                                else:
                                    bounding_box_size = (
                                        det[:, 2] - det[:, 0]) * (det[:, 3] -
                                                                  det[:, 1])
                                    img_center = img_size / 2
                                    offsets = np.vstack([
                                        (det[:, 0] + det[:, 2]) / 2 -
                                        img_center[1],
                                        (det[:, 1] + det[:, 3]) / 2 -
                                        img_center[0]
                                    ])
                                    offset_dist_squared = np.sum(
                                        np.power(offsets, 2.0), 0)
                                    index = np.argmax(
                                        bounding_box_size -
                                        offset_dist_squared * 2.0
                                    )  # some extra weight on the centering
                                    det_arr.append(det[index, :])
                            else:
                                det_arr.append(np.squeeze(det))

                            for i, det in enumerate(det_arr):
                                det = np.squeeze(det)
                                bb = np.zeros(4, dtype=np.int32)
                                bb[0] = np.maximum(det[0] - args.margin / 2, 0)
                                bb[1] = np.maximum(det[1] - args.margin / 2, 0)
                                bb[2] = np.minimum(det[2] + args.margin / 2,
                                                   img_size[1])
                                bb[3] = np.minimum(det[3] + args.margin / 2,
                                                   img_size[0])
                                cropped = img[bb[1]:bb[3], bb[0]:bb[2], :]
                                scaled = Image.fromarray(cropped).resize(
                                    (args.image_size, args.image_size),
                                    Image.BILINEAR)
                                nrof_successfully_aligned += 1
                                filename_base, file_extension = os.path.splitext(
                                    output_filename)
                                if args.detect_multiple_faces:
                                    output_filename_n = "{}_{}{}".format(
                                        filename_base, i, file_extension)
                                else:
                                    output_filename_n = "{}{}".format(
                                        filename_base, file_extension)
                                scaled.save(output_filename_n)
                                text_file.write('%s %d %d %d %d\n' %
                                                (output_filename_n, bb[0],
                                                 bb[1], bb[2], bb[3]))
                        else:
                            print('Unable to align "%s"' % image_path)
                            text_file.write('%s\n' % (output_filename))

    print('Total number of images: %d' % nrof_images_total)
    print('Number of successfully aligned images: %d' %
          nrof_successfully_aligned)
Beispiel #10
0
    img = Image.open(path)
    img = trans(img)
    return img


trans = transforms.Compose([transforms.Resize(512)])

trans_cropped = transforms.Compose(
    [np.float32,
     transforms.ToTensor(), fixed_image_standardization])

dataset = datasets.ImageFolder('data/test_images', transform=trans)
dataset.idx_to_class = {k: v for v, k in dataset.class_to_idx.items()}
loader = DataLoader(dataset, collate_fn=lambda x: x[0])

mtcnn_pt = MTCNN(device=torch.device('cpu'))

names = []
aligned = []
aligned_fromfile = []
for img, idx in loader:
    name = dataset.idx_to_class[idx]
    start = time()
    img_align = mtcnn_pt(
        img, save_path='data/test_images_aligned/{}/1.png'.format(name))
    print('MTCNN time: {:6f} seconds'.format(time() - start))

    if img_align is not None:
        names.append(name)
        aligned.append(img_align)
        aligned_fromfile.append(
Beispiel #11
0
#
#             point = points[0]
#             aligned_face = face_aligner(face_image, landmark=point, image_size='112,112')
#             aligned_face = Image.fromarray(aligned_face)
#             aligned_face.save(save_path)
#
#         except:
#             print('failed to extract:', file)

if __name__ == '__main__':
    # aligned_dir = './data/aligned/lfw'
    # raw_dir = './data/lfw/*/*.jpg'

    # align_face(raw_dir, aligned_dir)

    mtcnn = MTCNN()
    aligned_dir = './data/aligned/CASIA'

    for file in glob.glob("./data/raw/CASIA/*/*.jpg"):
        file_splits = file.split(os.path.sep)
        class_name = file_splits[-2]
        file_name = file_splits[-1]

        class_dir = os.path.join(aligned_dir, class_name)
        save_path = os.path.join(class_dir, file_name)

        if not os.path.exists(class_dir):
            os.makedirs(class_dir)

        face_image = Image.open(file)
        face_image = np.asarray(face_image)
Beispiel #12
0
def get_image(path, trans):
    img = Image.open(path)
    img = trans(img)
    return img


trans = transforms.Compose([transforms.Resize(512)])

trans_cropped = transforms.Compose(
    [np.float32, transforms.ToTensor(), prewhiten])

dataset = datasets.ImageFolder('data/test_images', transform=trans)
dataset.idx_to_class = {k: v for v, k in dataset.class_to_idx.items()}
loader = DataLoader(dataset, collate_fn=lambda x: x[0])

mtcnn_pt = MTCNN(device=torch.device('cpu'))

names = []
aligned = []
aligned_fromfile = []
for img, idx in loader:
    name = dataset.idx_to_class[idx]
    start = time()
    img_align = mtcnn_pt(
        img, save_path='data/test_images_aligned/{}/1.png'.format(name))
    print('MTCNN time: {:6f} seconds'.format(time() - start))

    if img_align is not None:
        names.append(name)
        aligned.append(img_align)
        aligned_fromfile.append(
Beispiel #13
0
#     face_image = np.asarray(face_image)
#
#     try:
#         print('extracting:', file)
#         boxes, _, points = mtcnn.detect(face_image, landmarks=True)
#
#         point = points[0]
#         aligned_face = face_aligner(face_image, landmark=point, image_size='112,112')
#         aligned_face = Image.fromarray(aligned_face)
#         aligned_face.save(save_path)
#
#     except:
#         print('failed to extract:', file)

if __name__ == '__main__':
    mtcnn = MTCNN(device='cuda')
    aligned_dir = './data/aligned/CASIA-maxpy-clean'

    for file in glob.glob(
            "./data/CASIA-maxpy-clean/CASIA-maxpy-clean/*/*.jpg"):
        file_splits = file.split(os.path.sep)
        class_name = file_splits[-2]
        file_name = file_splits[-1]

        class_dir = os.path.join(aligned_dir, class_name)
        save_path = os.path.join(class_dir, file_name)

        if not os.path.exists(class_dir):
            os.makedirs(class_dir)

        face_image = Image.open(file)
Beispiel #14
0
def get_image(path, trans):
    img = Image.open(path)
    img = trans(img)
    return img


trans = transforms.Compose([transforms.Resize(512)])

trans_cropped = transforms.Compose(
    [np.float32,
     transforms.ToTensor(), fixed_image_standardization])

dataset = datasets.ImageFolder('data/test_images', transform=trans)
dataset.idx_to_class = {k: v for v, k in dataset.class_to_idx.items()}

mtcnn_pt = MTCNN(device=torch.device('cpu'))

names = []
aligned = []
aligned_fromfile = []
for img, idx in dataset:
    name = dataset.idx_to_class[idx]
    start = time()
    img_align = mtcnn_pt(
        img, save_path='data/test_images_aligned/{}/1.png'.format(name))
    print('MTCNN time: {:6f} seconds'.format(time() - start))

    # Comparison between types
    img_box = mtcnn_pt.detect(img)[0]
    assert (img_box - mtcnn_pt.detect(np.array(img))[0]).sum() < 1e-2
    assert (img_box -
Beispiel #15
0
from models.mtcnn import MTCNN
from pydantic import BaseModel
from annoy import AnnoyIndex
from typing import Optional
from detect import detect
import torch
import io

# Looking for device
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

# Face detection model MTCNN
mtcnn = MTCNN(image_size=160,
              margin=0,
              min_face_size=20,
              keep_all=True,
              thresholds=[0.6, 0.7, 0.7],
              factor=0.709,
              post_process=True,
              device=device)

# InceptionResnetV1 for extract feature to make embedding vector
resnet = InceptionResnetV1(pretrained='vggface2').eval().to(device)

# Annoy for faster serach rather than loop
tree = AnnoyIndex(512, 'euclidean')
tree.load('./data/annoy_vector512.ann')

tags_metadata = [
    {
        "name":
        "detection",
Beispiel #16
0
import torch
import torch.nn as nn
import numpy as np
from PIL import Image
from datetime import datetime
import torchvision.transforms as transforms

from alignfaces import align_face
from models.mtcnn import MTCNN
from models.mobilefacenet import MobileFacenet

device = "cuda" if torch.cuda.is_available() else "cpu"
dt = datetime.now().isoformat(' ', 'seconds')
print("[INFO {}] Running on device: {}".format(dt, device))
# MTCNN model to face detection
model = MTCNN(device=device)

embeddings = MobileFacenet()
state_dict = torch.load("./weights/068.ckpt", map_location="cpu")
embeddings.load_state_dict(state_dict["net_state_dict"])
embeddings.eval()
embeddings.to(device)

cos = nn.CosineSimilarity(dim=0, eps=1e-6)

test_trainsforms = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

Beispiel #17
0
Datei: run.py Projekt: QMUL/AVA
    if not os.path.exists(outPath):
        os.makedirs(outPath)

    if args.video_path != 0:
        countFileName = '{}/{}.csv'.format(
            outPath,
            args.video_path.split('/')[-1].split('.mp4')[0])
    else:
        countFileName = '{}/results_live_cam.csv'.format(outPath)
    countFile = open(countFileName, 'w')
    countFile.close()

print('Running on: {}'.format(device))

# Prepare detection model
mtcnn = MTCNN(keep_all=True, device=device, ov=args.ov)

# Load video
cap = cv2.VideoCapture(args.video_path)
num_images = int(cap.get(
    cv2.CAP_PROP_FRAME_COUNT)) if args.video_path != 0 else 10000

if args.le:
    skip_frames = 10
cumulative = 0
if args.le:
    skip_frames = 10
id = 0  #fake (tracking) id
for fr in tqdm(range(num_images)):

    start = time.time()
Beispiel #18
0
from models.mtcnn import MTCNN, PNet, RNet, ONet, prewhiten, fixed_image_standardization
from models.utils.detect_face import extract_face
import torch
import numpy as np
import cv2

import os

from tqdm import tqdm

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

mtcnn = MTCNN(keep_all=True, device=device)

# ------------------------ export -----------------------------

print("==> Exporting model to ONNX format")
input_names = ['images']
output_names = ['scores']
inputs_pnet = torch.randn(1, 3, 649, 1153).to(device)
#inputs_pnet = torch.randn(1, 3, 460, 817).to(device)
inputs_rnet = torch.randn(1, 3, 24, 24).to(device)
inputs_onet = torch.randn(1, 3, 48, 48).to(device)

#state_dict_path = os.path.join(os.path.dirname(__file__), 'pnet.pt')
#state_dict = torch.load(state_dict_path)
#self.load_state_dict(state_dict)

#dynamic_axes = {'images': {2:'h',3:'w'}}
torch_out = torch.onnx._export(mtcnn.pnet,
                               inputs_pnet,
from models.mtcnn import MTCNN
from models.inception_resnet_v1 import InceptionResnetV1

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('Running on device: {}'.format(device))

# Define MTCNN module
# Default params shown for illustration, but not needed
# Note that, since MTCNN is a collection of neural nets and other code, the
# device must be passed in the following way to enable copying of objects when
# needed internally.
# See `help(MTCNN)` for details.
mtcnn = MTCNN(image_size=160,
              margin=0,
              min_face_size=20,
              thresholds=[0.6, 0.7, 0.7],
              factor=0.709,
              prewhiten=True,
              device=device)

# Define Inception Resnet V1 module
# Set classify=True for pretrained classifier
# See `help(InceptionResnetV1)` for details
resnet = InceptionResnetV1(pretrained='vggface2').eval().to(device)

# Define a dataset and data loader
dataset = datasets.ImageFolder('data/test_images')
dataset.idx_to_class = {i: c for c, i in dataset.class_to_idx.items()}
loader = DataLoader(dataset, collate_fn=lambda x: x[0])

# Perfom MTCNN facial detection
Beispiel #20
0
from PIL import Image, ImageDraw
import torch
from torch.utils.data import DataLoader
from torchvision import transforms, datasets
import numpy as np
import pandas as pd
from time import time
import sys, os
import glob

from models.mtcnn import MTCNN, fixed_image_standardization
from models.inception_resnet_v1 import InceptionResnetV1, get_torch_home
mtcnn = MTCNN(keep_all=True)
img = [
    Image.open(
        'C:/Users/mmlab/PycharmProjects/facenet-pytorch-master-s/data/abc.jpg'
    ),
    Image.open(
        'C:/Users/mmlab/PycharmProjects/facenet-pytorch-master-s/data/abc.jpg')
]
batch_boxes, batch_probs = mtcnn.detect(img)

mtcnn(
    img,
    save_path=[
        'C:/Users/mmlab/PycharmProjects/facenet-pytorch-master-s/data/tmp1.png',
        'C:/Users/mmlab/PycharmProjects/facenet-pytorch-master-s/data/tmp1.png'
    ])
tmp_files = glob.glob('data/tmp*')
for f in tmp_files:
    os.remove(f)