Beispiel #1
0
    def __init__(self, dim_input=1024, dim_embed=128, dim_mu=20):
        super(VAE, self).__init__()

        self.model_encode = PointNetCls(num_points=dim_input, k=dim_embed)
        self.model_decode = PointGen(num_points=dim_input, k=dim_mu)
        self.fc_mu = nn.Linear(dim_embed, dim_mu)
        self.fc_var = nn.Linear(dim_embed, dim_mu)
        self.sig = nn.Sigmoid()
        self.relu = nn.ReLU()
Beispiel #2
0
    ## Load victim model
    ############################################################

    print('=====> Loading victim model from checkpoint...')
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    checkpoint = torch.load('checkpoints/%s.pth' % args.model_path)

    args.note = args.note + ' model note:' + checkpoint['args'].note

    if args.data == 'modelnet40':
        num_classes = 40
    elif args.data == 'shapenetpart':
        num_classes = 16

    if args.model == 'pointnet':
        model = PointNetCls(num_classes, args.feature_transform)
        model = model.to(device)
    elif args.model == 'pointnet2':
        model = PointNet2ClsMsg(num_classes)
        model = model.to(device)
        model = nn.DataParallel(model)
    elif args.model == 'dgcnn':
        model = DGCNN(num_classes)
        model = model.to(device)
        model = nn.DataParallel(model)
    elif args.model == 'pointcnn':
        model = PointCNNCls(num_classes)
        model = model.to(device)
        model = nn.DataParallel(model)
    elif args.model == 'rscnn':
        from models.rscnn import RSCNN
                           transforms=test_tfs)
    train_loader = DataLoader(train_data,
                              num_workers=4,
                              batch_size=args.batch_size,
                              shuffle=True,
                              drop_last=True)
    test_loader = DataLoader(test_data,
                             num_workers=4,
                             batch_size=args.batch_size,
                             shuffle=True,
                             drop_last=False)
    ########################################
    ## Intiate model
    ########################################
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    attack_model = PointNetCls(NUM_CLASSES, args.feature_transform).to(device)
    attack_model = attack_model.to(device)
    if len(args.resume) > 1:
        print('=====> Loading from checkpoint...')
        checkpoint = torch.load('checkpoints/%s.pth' % args.resume)
        args = checkpoint['args']

        torch.manual_seed(args.seed)
        print("Random Seed: ", args.seed)

        attack_model.load_state_dict(checkpoint['model_state_dict'])

        print('Successfully resumed!')
    else:
        print("there's no checkpoint")
    generator = Generator(up_ratio=1).to(device)
Beispiel #4
0
def load_models(mode, device, args):
    """

    :param mode: "cls" or "disc"
    :param args:
    :return:
    """

    if mode == "cls":
        model = PointNetCls(k=40, feature_transform=False) # False
        model = model.to(device)
        try:
            if args.checkpoint:
                print('===============================')
                print("Loading pretrained cls model ...")
                print('===============================')
                model.load_state_dict(torch.load(args.checkpoint))
        except Exception as e:
            print(e)
            sys.exit(0)
    elif mode == "seg":
        model = PointNetSeg(NUM_SEG_CLASSES=50)
        model = init_net(model, device, init_type=args.init_disc)
        try:
            if args.checkpoint:
                print('===============================')
                print("Loading pretrained cls model ...")
                print('===============================')
                model.load_state_dict(torch.load(args.checkpoint))
        except Exception as e:
            print(e)
            sys.exit(0)
    elif mode == "seg_regu":
        model = PointNetSeg_regulization(NUM_SEG_CLASSES=50)
        model = init_net(model, device, init_type=args.init_disc)
        try:
            if args.checkpoint:
                print('===============================')
                print("Loading pretrained cls model ...")
                print('===============================')
                model.load_state_dict(torch.load(args.checkpoint))
        except Exception as e:
            print(e)
            sys.exit(0)
    elif mode == "disc":
        model = DeepConvDiscNet(input_dim=args.disc_indim, output_dim=1)  # input_dim=args.input_pts, output_dim=1)
        model = init_net(model, device, init_type=args.init_disc)
        #if args.checkpoint_disc:
        #    print('===============================')
        #    print("Loading pretrained discriminator model ...")
        #    print('===============================')
        #    model.load_state_dict(torch.load(args.checkpoint_disc))
        # model = init_net(model, device, init_type=args.init_disc)
    elif mode == "disc_seg":
        model = PointwiseDiscNet(input_pts=args.input_pts,input_dim=args.disc_indim)
        model = init_net(model, device, init_type=args.init_disc)
    elif mode == "disc_dual":
        shared_disc = BaseDiscNet(input_pts=args.input_pts, input_dim=args.disc_indim, output_dim=256)
        shapeDisc = ShapeDiscNet(shared_output_dim=256, num_shapes=16)
        pointDisc = PointDiscNet(shared_output_dim=256, input_pts=args.input_pts)
        # model_point = SharedPointDiscNet(
        #     input_pts=args.input_pts,
        #     input_dim=args.disc_indim,
        #     shared_output_dim=128)
        # model_shape = SharedShapeDiscNet(
        #     input_pts=args.input_pts,
        #     input_dim=args.disc_indim,
        #     shared_output_dim=128,
        #     num_shapes=16,
        # )
        shared_disc = init_net(shared_disc, device, init_type=args.init_disc)
        shapeDisc = init_net(shapeDisc, device, init_type=args.init_disc)
        pointDisc = init_net(pointDisc, device, init_type=args.init_disc)
        return shared_disc, shapeDisc, pointDisc
    elif mode == "disc_stack":
        model = StackDiscNet(input_pts = args.input_pts, input_dim=args.disc_indim, num_shapes=16)
        model = init_net(model, device, init_type=args.init_disc)
    else:
        raise ValueError("Invalid mode {}!".format(mode))

    return model
Beispiel #5
0



    ########################################
    ## Intiate model
    ########################################
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    if args.data == 'modelnet40':
        num_classes = 40
    elif args.data == 'shapenetpart':
        num_classes = 16


    if args.model == 'pointnet':
        model = PointNetCls(num_classes, args.feature_transform)  
        model = model.to(device)  
    elif args.model == 'pointnet2':
        model = PointNet2ClsMsg(num_classes)
        model = model.to(device)
        model = nn.DataParallel(model)
    elif args.model == 'dgcnn':
        model = DGCNN(num_classes)
        model = model.to(device) 
        model = nn.DataParallel(model)
    elif args.model == 'pointcnn':
        model = PointCNNCls(num_classes)
        model = model.to(device) 
        model = nn.DataParallel(model)
    elif args.model == 'rscnn':  
        from models.rscnn import RSCNN ## use torch 0.4.1.post2
Beispiel #6
0
    num_classes = 40

    if args.model == 'dgcnn_kcutmix':
        model = DGCNN(num_classes)
        model = model.to(device)
        model = nn.DataParallel(model)
        optimizer = torch.optim.SGD(model.parameters(),
                                    lr=args.lr * 100,
                                    momentum=0.9,
                                    weight_decay=1e-4)
        scheduler_c = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer,
                                                                 250,
                                                                 eta_min=1e-3)
    else:
        if args.model == 'pointnet_kcutmix':
            model = PointNetCls(num_classes, args.feature_transform)
            model = model.to(device)
        elif args.model == 'pointnet2_kcutmix':
            model = PointNet2ClsMsg(num_classes)
            model = model.to(device)
            model = nn.DataParallel(model)

        elif args.model == 'rscnn_kcutmix':
            from models.rscnn import RSCNN
            import models.rscnn_utils.pointnet2_utils as pointnet2_utils

            model = RSCNN(num_classes)
            model = model.to(device)
            model = nn.DataParallel(model)

        optimizer = torch.optim.Adam(model.parameters(),
Beispiel #7
0
                        type=int,
                        default=16,
                        help='input batch size')
    parser.add_argument('--local_rank',
                        default=-1,
                        type=int,
                        help='node rank for distributed training')
    args = parser.parse_args()

    dist.init_process_group(backend='nccl')
    torch.cuda.set_device(args.local_rank)
    cudnn.benchmark = True
    num_classes = 40

    if args.model == 'pointnet':
        model = PointNetCls(num_classes, args.feature_transform)
    #load pretrain model
    state_dict = torch.load('model/p1.pth', map_location='cpu')
    try:
        model.load_state_dict(state_dict['model_state_dict'])
    except RuntimeError:
        state_dict = {k[7:]: v for k, v in state_dict.items()}
        model.load_state_dict(state_dict)

    model = DistributedDataParallel(model.cuda(), device_ids=[args.local_rank])

    print('======> Loading data')
    train_sampler = torch.utils.data.distributed.DistributedSampler(valid_ds)
    test_loader = torch.utils.data.DataLoader(valid_ds,
                                              batch_size=args.batch_size,
                                              num_workers=4,
    args.feature_transform, args.augment = bool(args.feature_transform), bool(
        args.augment)
    ### Set random seed
    args.seed = args.seed if args.seed > 0 else random.randint(1, 10000)

    # dataset path
    DATA_PATH = '/home/zjl/data/modelnet40_normal_resampled/'

    ########################################
    ## Intiate model
    ########################################
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    num_classes = 40

    if args.model == 'pointnet_kcutmix':
        model = PointNetCls(num_classes, args.feature_transform)
        model = model.to(device)
    elif args.model == 'pointnet2_kcutmix':
        model = PointNet2ClsMsg(num_classes)
        model = model.to(device)
        model = nn.DataParallel(model)
    elif args.model == 'dgcnn_kcutmix':
        model = DGCNN(num_classes)
        model = model.to(device)
        model = nn.DataParallel(model)
    elif args.model == 'rscnn_kcutmix':
        from models.rscnn import RSCNN
        import models.rscnn_utils.pointnet2_utils as pointnet2_utils
        import models.rscnn_utils.pytorch_utils as pt_utils

        model = RSCNN(num_classes)