Beispiel #1
0
def create(name, pretrained, channels, classes, autoshape):
    """Creates a specified YOLOv3 model

    Arguments:
        name (str): name of model, i.e. 'yolov3'
        pretrained (bool): load pretrained weights into the model
        channels (int): number of input channels
        classes (int): number of model classes

    Returns:
        pytorch model
    """
    try:
        cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0]  # model.yaml path
        model = Model(cfg, channels, classes)
        if pretrained:
            fname = f'{name}.pt'  # checkpoint filename
            attempt_download(fname)  # download if not found locally
            ckpt = torch.load(fname, map_location=torch.device('cpu'))  # load
            msd = model.state_dict()  # model state_dict
            csd = ckpt['model'].float().state_dict()  # checkpoint state_dict as FP32
            csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape}  # filter
            model.load_state_dict(csd, strict=False)  # load
            if len(ckpt['model'].names) == classes:
                model.names = ckpt['model'].names  # set class names attribute
            if autoshape:
                model = model.autoshape()  # for file/URI/PIL/cv2/np inputs and NMS
        device = select_device('0' if torch.cuda.is_available() else 'cpu')  # default to GPU if available
        return model.to(device)

    except Exception as e:
        help_url = 'https://github.com/ultralytics/yolov5/issues/36'
        s = 'Cache maybe be out of date, try force_reload=True. See %s for help.' % help_url
        raise Exception(s) from e
Beispiel #2
0
def custom(path_or_model='path/to/model.pt', autoshape=True, verbose=True):
    """YOLOv5-custom model https://github.com/ultralytics/yolov5

    Arguments (3 options):
        path_or_model (str): 'path/to/model.pt'
        path_or_model (dict): torch.load('path/to/model.pt')
        path_or_model (nn.Module): torch.load('path/to/model.pt')['model']

    Returns:
        pytorch model
    """
    set_logging(verbose=verbose)

    model = torch.load(path_or_model) if isinstance(
        path_or_model, str) else path_or_model  # load checkpoint
    if isinstance(model, dict):
        model = model['ema' if model.get('ema') else 'model']  # load model

    hub_model = Model(model.yaml).to(next(model.parameters()).device)  # create
    hub_model.load_state_dict(model.float().state_dict())  # load state_dict
    hub_model.names = model.names  # class names
    if autoshape:
        hub_model = hub_model.autoshape(
        )  # for file/URI/PIL/cv2/np inputs and NMS
    device = select_device('0' if torch.cuda.is_available() else
                           'cpu')  # default to GPU if available
    return hub_model.to(device)
Beispiel #3
0
def test_2():
    from models.yolo import Model
    device = 'cuda:0'
    model_path = '/home/lintao/jobs/logo/yolov5-4.0/yolov5s.pt'

    # model = torch.load(model_path)['model'].float()
    model = Model(
        '/home/lintao/jobs/logo/yolov5-4.0/models/yolov5s.yaml').eval()
    model.to(device)
    model.model[-1].export = True
    x = torch.ones((1, 3, 640, 640)).float().cuda()
    y = model(x)
    save_path = model_path.replace('.pt', '.onnx')  # filename
    torch_2_onnx(model,
                 x,
                 input_names=['images'],
                 output_names=['classes'],
                 save_path=save_path)
Beispiel #4
0
def create(name,
           pretrained=True,
           channels=3,
           classes=80,
           autoshape=True,
           verbose=True):
    """Creates a specified YOLOv5 model

    Arguments:
        name (str): name of model, i.e. 'yolov5s'
        pretrained (bool): load pretrained weights into the model
        channels (int): number of input channels
        classes (int): number of model classes
        autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
        verbose (bool): print all information to screen

    Returns:
        YOLOv5 pytorch model
    """
    set_logging(verbose=verbose)
    fname = Path(name).with_suffix('.pt')  # checkpoint filename
    try:
        if pretrained and channels == 3 and classes == 80:
            model = attempt_load(
                fname,
                map_location=torch.device('cpu'))  # download/load FP32 model
        else:
            cfg = list((Path(__file__).parent /
                        'models').rglob(f'{name}.yaml'))[0]  # model.yaml path
            model = Model(cfg, channels, classes)  # create model
            if pretrained:
                attempt_download(fname)  # download if not found locally
                ckpt = torch.load(fname,
                                  map_location=torch.device('cpu'))  # load
                msd = model.state_dict()  # model state_dict
                csd = ckpt['model'].float().state_dict(
                )  # checkpoint state_dict as FP32
                csd = {
                    k: v
                    for k, v in csd.items() if msd[k].shape == v.shape
                }  # filter
                model.load_state_dict(csd, strict=False)  # load
                if len(ckpt['model'].names) == classes:
                    model.names = ckpt[
                        'model'].names  # set class names attribute
        if autoshape:
            model = model.autoshape()  # for file/URI/PIL/cv2/np inputs and NMS
        device = select_device('0' if torch.cuda.is_available() else
                               'cpu')  # default to GPU if available
        return model.to(device)

    except Exception as e:
        help_url = 'https://github.com/ultralytics/yolov5/issues/36'
        s = 'Cache may be out of date, try `force_reload=True`. See %s for help.' % help_url
        raise Exception(s) from e
Beispiel #5
0
def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
    """Creates a specified YOLOv5 model

    Arguments:
        name (str): name of model, i.e. 'yolov5s'
        pretrained (bool): load pretrained weights into the model
        channels (int): number of input channels
        classes (int): number of model classes
        autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
        verbose (bool): print all information to screen
        device (str, torch.device, None): device to use for model parameters

    Returns:
        YOLOv5 pytorch model
    """
    from pathlib import Path

    from models.common import AutoShape
    from models.experimental import attempt_load
    from models.yolo import Model
    from utils.downloads import attempt_download
    from utils.general import check_requirements, intersect_dicts, set_logging
    from utils.torch_utils import select_device

    file = Path(__file__).resolve()
    check_requirements(exclude=('tensorboard', 'thop', 'opencv-python'))
    set_logging(verbose=verbose)

    save_dir = Path('') if str(name).endswith('.pt') else file.parent
    path = (save_dir / name).with_suffix('.pt')  # checkpoint path
    try:
        device = select_device(('0' if torch.cuda.is_available() else 'cpu') if device is None else device)

        if pretrained and channels == 3 and classes == 80:
            model = attempt_load(path, map_location=device)  # download/load FP32 model
        else:
            cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0]  # model.yaml path
            model = Model(cfg, channels, classes)  # create model
            if pretrained:
                ckpt = torch.load(attempt_download(path), map_location=device)  # load
                csd = ckpt['model'].float().state_dict()  # checkpoint state_dict as FP32
                csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors'])  # intersect
                model.load_state_dict(csd, strict=False)  # load
                if len(ckpt['model'].names) == classes:
                    model.names = ckpt['model'].names  # set class names attribute
        if autoshape:
            model = AutoShape(model)  # for file/URI/PIL/cv2/np inputs and NMS
        return model.to(device)

    except Exception as e:
        help_url = 'https://github.com/ultralytics/yolov5/issues/36'
        s = 'Cache may be out of date, try `force_reload=True`. See %s for help.' % help_url
        raise Exception(s) from e
Beispiel #6
0
def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
    """Creates a specified YOLOv3 model

    Arguments:
        name (str): name of model, i.e. 'yolov3'
        pretrained (bool): load pretrained weights into the model
        channels (int): number of input channels
        classes (int): number of model classes
        autoshape (bool): apply YOLOv3 .autoshape() wrapper to model
        verbose (bool): print all information to screen
        device (str, torch.device, None): device to use for model parameters

    Returns:
        YOLOv3 pytorch model
    """
    from pathlib import Path

    from models.yolo import Model, attempt_load
    from utils.general import check_requirements, set_logging
    from utils.google_utils import attempt_download
    from utils.torch_utils import select_device

    check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('tensorboard', 'pycocotools', 'thop'))
    set_logging(verbose=verbose)

    fname = Path(name).with_suffix('.pt')  # checkpoint filename
    try:
        if pretrained and channels == 3 and classes == 80:
            model = attempt_load(fname, map_location=torch.device('cpu'))  # download/load FP32 model
        else:
            cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0]  # model.yaml path
            model = Model(cfg, channels, classes)  # create model
            if pretrained:
                ckpt = torch.load(attempt_download(fname), map_location=torch.device('cpu'))  # load
                msd = model.state_dict()  # model state_dict
                csd = ckpt['model'].float().state_dict()  # checkpoint state_dict as FP32
                csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape}  # filter
                model.load_state_dict(csd, strict=False)  # load
                if len(ckpt['model'].names) == classes:
                    model.names = ckpt['model'].names  # set class names attribute
        if autoshape:
            model = model.autoshape()  # for file/URI/PIL/cv2/np inputs and NMS
        device = select_device('0' if torch.cuda.is_available() else 'cpu') if device is None else torch.device(device)
        return model.to(device)

    except Exception as e:
        help_url = 'https://github.com/ultralytics/yolov5/issues/36'
        s = 'Cache may be out of date, try `force_reload=True`. See %s for help.' % help_url
        raise Exception(s) from e
    # Load PyTorch model
    # ckpt = torch.load(opt.weights, map_location=lambda storage, loc: storage.cuda())['model'].float()
    with open('./models/configs/yolo3d_5m.yaml') as f:
        cfg = yaml.load(f, Loader=yaml.FullLoader)
        cfg.update(opt.__dict__)
        print(cfg)
    model = Model(cfg)
    model.eval()
    checkpointer = model_utils.CheckPointer(model, device=device)
    checkpointer.load(opt.weights, load_solver=False)
    # model.to(device)
    if half:
        model.half()  # to FP16
        img = img.half()
    else:
        model.to(torch.float32)
    model.to(device)
    # _print_weights_(model)
    _ = model(img)  # dry run
    model.model[-1].export = True  # set Detect() layer export=True
    # TorchScript export
    try:
        print('\nStarting TorchScript export with torch %s...' %
              torch.__version__)
        f = opt.weights.replace('.pt', '.torchscript.pt')  # filename
        ts = torch.jit.trace(model, img)
        ts.save(f)
        print('TorchScript export success, saved as %s' % f)
    except Exception as e:
        print('TorchScript export failure: %s' % e)
def detect():
    weights, imgsz, output = opt.checkpoint, opt.img_size, opt.output_video

    # Initialize
    device = torch_utils.select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    with open(opt.project) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)
    names = data_dict['names']
    dest_object = data_dict[
        'dest_object'] if 'dest_object' in data_dict else names
    if 'name_map' in data_dict:
        name_map = data_dict['name_map']
    else:
        name_map = defaultdict()
        for x in dest_object:
            name_map[x] = x
    draw_names = set()
    for k, v in name_map.items():
        draw_names.add(v)
    draw_names = list(draw_names)
    colors = get_all_colors(len(draw_names))

    model = Model(data_dict).to(device)
    model.load_state_dict(torch.load(weights, map_location=device))
    model.to(device).eval()
    if half:
        model.half()

    if opt.video_type == 'camera':
        rtsp = 'rtsp://*****:*****@' + opt.input_video + ':554/h264/chCH/sub/av_stream'
        cap = cv2.VideoCapture(rtsp)
    elif opt.video_type == 'video':
        cap = cv2.VideoCapture(opt.input_video)
    else:
        print('Input video type ERROR!')
        return

    fps = int(cap.get(cv2.CAP_PROP_FPS))
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    print(fps, width, height)
    fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
    outstream = cv2.VideoWriter(output, fourcc, fps, (width, height))

    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img
              ) if device.type != 'cpu' else None  # run once
    while (cap.isOpened()):
        ret, im0s = cap.read()
        if ret:
            pred = forward_one(model, im0s, imgsz, device, half, opt)

            for i, det in enumerate(pred):  # detections per image
                if det is not None and len(det):
                    for *xyxy, conf, cls in det:
                        if names[int(cls)] in dest_object:
                            draw_str = name_map[names[int(cls)]]
                            color = colors[draw_names.index(draw_str)]
                            label = '%s %.2f' % (draw_str, conf)
                            xmin, ymin, xmax, ymax = xyxy
                            cv2.rectangle(im0s, (xmin, ymin), (xmax, ymax),
                                          color=color,
                                          thickness=1)
                            cv2.putText(im0s, label, (xmin, ymax),
                                        cv2.FONT_HERSHEY_SIMPLEX, 0.6, color,
                                        1)

            if opt.need_view:
                cv2.imshow('real-time', im0s)
                key = cv2.waitKey(delay=1)
                if key == ord('q'):
                    break
            else:
                outstream.write(im0s)

    cv2.destroyAllWindows()
    print('Done. (%.3fs)' % (time.time() - t0))
Beispiel #9
0
def detect():
    source, weights, view_img, save_txt, imgsz = \
        opt.input_images, opt.checkpoint, opt.view_img, opt.save_txt, opt.img_size
    webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')

    # Initialize
    device = torch_utils.select_device(opt.device)
    if os.path.exists(opt.output_images):
        shutil.rmtree(opt.output_images)  # delete output folder
    os.makedirs(opt.output_images)  # make new output folder
    half = device.type != 'cpu'  # half precision only supported on CUDA


    with open(opt.project) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)
    model = Model(data_dict).to(device)
    model.load_state_dict(torch.load(weights, map_location=device))
    model.names = data_dict['names']


    # Load model
    #google_utils.attempt_download(weights)
    #model = torch.load(weights, map_location=device)['model'].float()  # load to FP32
    #model = torch.load(weights, map_location=device).float()  # load to FP32
    # torch.save(torch.load(weights, map_location=device), weights)  # update model if SourceChangeWarning
    # model.fuse()
    model.to(device).eval()
    if half:
        model.half()  # to FP16

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    #colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
    colors = get_all_colors(len(names))

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img) if device.type != 'cpu' else None  # run once
    #for path, img, im0s, vid_cap in dataset:
    for f in os.listdir(source):
        t1 = time.time()
        path = os.path.join(source, f)
        im0s = cv2.imread(path)
        img = letterbox(im0s, new_shape=imgsz)[0]
        img = img[:, :, ::-1].transpose(2, 0, 1)
        img = np.ascontiguousarray(img)

        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        #t1 = torch_utils.time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
        t2 = torch_utils.time_synchronized()

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            p, s, im0 = path, '', im0s

            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  #  normalization gain whwh
            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                # Write results
                for *xyxy, conf, cls in det:
                    label = '%s %.2f' % (names[int(cls)], conf)
                    xmin, ymin, xmax, ymax = xyxy
                    color = colors[int(cls)]
                    cv2.rectangle(im0, (xmin, ymin), (xmax, ymax), color=color, thickness=2)
                    cv2.putText(im0, label, (xmin, ymax), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 1)

        cv2.imwrite(os.path.join(opt.output_images, f), im0)
        print('%s Done. (%.3fs)' % (path, time.time() - t1))

    print('Done. (%.3fs)' % (time.time() - t0))
Beispiel #10
0
def test(data,
         weights=None,
         batch_size=16,
         imgsz=640,
         conf_thres=0.001,
         iou_thres=0.6,  # for NMS
         save_json=False,
         single_cls=False,
         augment=False,
         verbose=False,
         model=None,
         dataloader=None,
         fast=False):
    # Initialize/load model and set device
    if model is None:
        training = False
        device = torch_utils.select_device(opt.device, batch_size=batch_size)
        half = device.type != 'cpu'  # half precision only supported on CUDA

        # Remove previous
        for f in glob.glob('test_batch*.jpg'):
            os.remove(f)

        # Load model
        google_utils.attempt_download(weights)
        # model = torch.load(weights, map_location=device)['state_dict'].float()  # load to FP32
        model = Model(model_cfg='/home/ai/yulu/yolov5/models/yolov5s.yaml')
        if os.path.exists(opt.weights):
            ckpt = torch.load(opt.weights, map_location=device)
            state_dict = {key: ckpt['state_dict'][key] for key in model.state_dict().keys()}
            model.load_state_dict(state_dict)

        # torch_utils.model_info(model)
        model.fuse()
        model.to(device)
        if half:
            model.half()  # to FP16

        # Multi-GPU disabled, incompatible with .half()
        # if device.type != 'cpu' and torch.cuda.device_count() > 1:
        #     model = nn.DataParallel(model)

    else:  # called by train.py
        training = True
        device = next(model.parameters()).device  # get model device
        # half disabled https://github.com/ultralytics/yolov5/issues/99
        half = False  # device.type != 'cpu' and torch.cuda.device_count() == 1
        if half:
            model.half()  # to FP16

    # Configure
    model.eval()
    with open(data) as f:
        data = yaml.load(f, Loader=yaml.FullLoader)  # model dict
    nc = 1 if single_cls else int(data['nc'])  # number of classes
    iouv = torch.linspace(0.5, 0.95, 10).to(device)  # iou vector for [email protected]:0.95
    # iouv = iouv[0].view(1)  # comment for [email protected]:0.95
    niou = iouv.numel()

    # Dataloader
    if dataloader is None:  # not training
        img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
        _ = model(img.half() if half else img) if device.type != 'cpu' else None  # run once

        fast |= conf_thres > 0.001  # enable fast mode
        path = data['test'] if opt.task == 'test' else data['val']  # path to val/test images
        dataset = LoadImagesAndLabels(path,
                                      imgsz,
                                      batch_size,
                                      rect=True,  # rectangular inference
                                      single_cls=opt.single_cls,  # single class mode
                                      pad=0.5)  # padding
        batch_size = min(batch_size, len(dataset))
        nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workers
        dataloader = DataLoader(dataset,
                                batch_size=batch_size,
                                num_workers=nw,
                                pin_memory=True,
                                collate_fn=dataset.collate_fn)

    seen = 0
    # names = model.names if hasattr(model, 'names') else model.module.names
    coco91class = coco80_to_coco91_class()
    s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', '[email protected]', '[email protected]:.95')
    p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
    loss = torch.zeros(3, device=device)
    jdict, stats, ap, ap_class = [], [], [], []
    for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
        img = img.to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        targets = targets.to(device)
        nb, _, height, width = img.shape  # batch size, channels, height, width
        whwh = torch.Tensor([width, height, width, height]).to(device)

        # Disable gradients
        with torch.no_grad():
            # Run model
            t = torch_utils.time_synchronized()
            inf_out, train_out = model(img, augment=augment)  # inference and training outputs
            t0 += torch_utils.time_synchronized() - t

            # Compute loss
            if training:  # if model has loss hyperparameters
                loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3]  # GIoU, obj, cls

            # Run NMS
            t = torch_utils.time_synchronized()
            output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, fast=fast)  # ??????????????
            t1 += torch_utils.time_synchronized() - t

        # Statistics per image
        for si, pred in enumerate(output):
            labels = targets[targets[:, 0] == si, 1:]
            nl = len(labels)
            tcls = labels[:, 0].tolist() if nl else []  # target class
            seen += 1

            if pred is None:
                if nl:
                    stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
                continue

            # Append to text file
            # with open('test.txt', 'a') as file:
            #    [file.write('%11.5g' * 7 % tuple(x) + '\n') for x in pred]

            # Clip boxes to image bounds
            clip_coords(pred, (height, width))

            # Append to pycocotools JSON dictionary
            if save_json:
                # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
                image_id = int(Path(paths[si]).stem.split('_')[-1])
                box = pred[:, :4].clone()  # xyxy
                scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1])  # to original shape
                box = xyxy2xywh(box)  # xywh
                box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
                for p, b in zip(pred.tolist(), box.tolist()):
                    jdict.append({'image_id': image_id,
                                  'category_id': coco91class[int(p[5])],
                                  'bbox': [round(x, 3) for x in b],
                                  'score': round(p[4], 5)})

            # Assign all predictions as incorrect
            correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
            if nl:
                detected = []  # target indices
                tcls_tensor = labels[:, 0]

                # target boxes
                tbox = xywh2xyxy(labels[:, 1:5]) * whwh

                # Per target class
                for cls in torch.unique(tcls_tensor):
                    ti = (cls == tcls_tensor).nonzero().view(-1)  # prediction indices
                    pi = (cls == pred[:, 5]).nonzero().view(-1)  # target indices

                    # Search for detections
                    if pi.shape[0]:
                        # Prediction to target ious
                        ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1)  # best ious, indices

                        # Append detections
                        for j in (ious > iouv[0]).nonzero():
                            d = ti[i[j]]  # detected target
                            if d not in detected:
                                detected.append(d)
                                correct[pi[j]] = ious[j] > iouv  # iou_thres is 1xn
                                if len(detected) == nl:  # all targets already located in image
                                    break

            # Append statistics (correct, conf, pcls, tcls)
            stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))

        # Plot images
        if batch_i < 1:
            f = 'test_batch%g_gt.jpg' % batch_i  # filename
            # plot_images(img, targets, paths, f, names)  # ground truth
            plot_images(img, targets, paths, f, 'yolov5s')
            f = 'test_batch%g_pred.jpg' % batch_i
            # plot_images(img, output_to_target(output, width, height), paths, f, names)  # predictions
            plot_images(img, output_to_target(output, width, height), paths, f, 'yolov5s')

            # Compute statistics
    stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy
    if len(stats):
        p, r, ap, f1, ap_class = ap_per_class(*stats)
        p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1)  # [P, R, [email protected], [email protected]:0.95]
        mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
        nt = np.bincount(stats[3].astype(np.int64), minlength=nc)  # number of targets per class
    else:
        nt = torch.zeros(1)

    # Print results
    pf = '%20s' + '%12.3g' * 6  # print format
    print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))

    # Print results per class
    if verbose and nc > 1 and len(stats):
        for i, c in enumerate(ap_class):
            print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))

    # Print speeds
    t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size)  # tuple
    if not training:
        print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)

    # Save JSON
    if save_json and map50 and len(jdict):
        imgIds = [int(Path(x).stem.split('_')[-1]) for x in dataloader.dataset.img_files]
        f = 'detections_val2017_%s_results.json' % \
            (weights.split(os.sep)[-1].replace('.pt', '') if weights else '')  # filename
        print('\nCOCO mAP with pycocotools... saving %s...' % f)
        with open(f, 'w') as file:
            json.dump(jdict, file)

        try:
            from pycocotools.coco import COCO
            from pycocotools.cocoeval import COCOeval

            # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
            cocoGt = COCO(glob.glob('../coco/annotations/instances_val*.json')[0])  # initialize COCO ground truth api
            cocoDt = cocoGt.loadRes(f)  # initialize COCO pred api

            cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
            cocoEval.params.imgIds = imgIds  # image IDs to evaluate
            cocoEval.evaluate()
            cocoEval.accumulate()
            cocoEval.summarize()
            map, map50 = cocoEval.stats[:2]  # update results ([email protected]:0.95, [email protected])
        except:
            print('WARNING: pycocotools must be installed with numpy==1.17 to run correctly. '
                  'See https://github.com/cocodataset/cocoapi/issues/356')

    # Return results
    maps = np.zeros(nc) + map
    for i, c in enumerate(ap_class):
        maps[c] = ap[i]
    return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
Beispiel #11
0
def train(hyp, opt, device, tb_writer=None, wandb=None):
    logger.info(f'Hyperparameters {hyp}')
    save_dir, epochs, batch_size, total_batch_size, weights, rank = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Directories
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = save_dir / 'results.txt'

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not opt.evolve  # create plots
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc, names = (1, ['item']) if opt.single_cls else (int(
        data_dict['nc']), data_dict['names'])  # number classes, names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        if hyp.get('anchors'):
            ckpt['model'].yaml['anchors'] = round(
                hyp['anchors'])  # force autoanchor
        model = Model(opt.cfg or ckpt['model'].yaml, ch=3,
                      nc=nc).to(device)  # create
        exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [
        ]  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info(
            'Transferred %g/%g items from %s' %
            (len(state_dict), len(model.state_dict()), weights))  # report

    else:
        model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create

    # replace the original model to a quantized model
    if opt.quantization:
        print(model)
        model = model.cpu()

        print("opt.cfg => {}".format(opt.cfg))
        if opt.cfg.split("/")[-1].split(".")[-2] == "yolov3-tiny":
            print("model: yolov3-tiny")
            layer_layer_count = 12
        else:
            layer_layer_count = 100000

        # quantize model
        model = tflite.replace(model=model,
                               quantization_bits=opt.quantization_bits,
                               scale_bits=opt.scale_bits,
                               bias_bits=opt.bias_bits,
                               layer_layer_count=layer_layer_count)
        model = model.to(device)

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp[
        'lrf']) + hyp['lrf']  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Logging
    if wandb and wandb.run is None:
        opt.hyp = hyp  # add hyperparameters
        wandb_run = wandb.init(
            config=opt,
            resume="allow",
            project='YOLOv3'
            if opt.project == 'runs/train' else Path(opt.project).stem,
            name=save_dir.stem,
            id=ckpt.get('wandb_id') if 'ckpt' in locals() else None)
    loggers = {'wandb': wandb}  # loggers dict

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # Results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weights, epochs)
        if epochs < start_epoch:
            logger.info(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # EMA
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # DDP mode
    if cuda and rank != -1:
        model = DDP(model,
                    device_ids=[opt.local_rank],
                    output_device=opt.local_rank)

    # xiezheng add
    # Set hook to store Conv results for No
    register_hook(model, hook_conv_results)
    logger.info("len(oaq_conv_result)={},\noaq_conv_result={}".format(
        len(oaq_conv_result), oaq_conv_result))

    # Trainloader
    dataloader, dataset = create_dataloader(train_path,
                                            imgsz,
                                            batch_size,
                                            gs,
                                            opt,
                                            hyp=hyp,
                                            augment=True,
                                            cache=opt.cache_images,
                                            rect=opt.rect,
                                            rank=rank,
                                            world_size=opt.world_size,
                                            workers=opt.workers,
                                            image_weights=opt.image_weights)
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    # Process 0
    if rank in [-1, 0]:
        ema.updates = start_epoch * nb // accumulate  # set EMA updates
        testloader = create_dataloader(
            test_path,
            imgsz_test,
            total_batch_size,
            gs,
            opt,  # testloader
            hyp=hyp,
            cache=opt.cache_images and not opt.notest,
            rect=True,
            rank=-1,
            world_size=opt.world_size,
            workers=opt.workers,
            pad=0.5)[0]

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                Thread(target=plot_labels,
                       args=(labels, save_dir, loggers),
                       daemon=True).start()
                if tb_writer:
                    tb_writer.add_histogram('classes', c, 0)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)

    # Model parameters
    hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(
        device)  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb),
             1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    # scaler = amp.GradScaler(enabled=cuda)
    logger.info('Image sizes %g train, %g test\n'
                'Using %g dataloader workers\nLogging results to %s\n'
                'Starting training for %g epochs...' %
                (imgsz, imgsz_test, dataloader.num_workers, save_dir, epochs))

    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()
        if opt.quantization:
            tflite.unfreeze_model(model)  # unfreeze the activation range

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (
                    1 - maps)**2  # class weights
                iw = labels_to_image_weights(dataset.labels,
                                             nc=nc,
                                             class_weights=cw)  # image weights
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = (torch.tensor(dataset.indices)
                           if rank == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(
            ('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls',
                                   'total', 'targets', 'img_size'))
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------

            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # Forward
            # with amp.autocast(enabled=cuda):
            pred = model(imgs)  # forward
            loss, loss_items = compute_loss(pred, targets.to(device),
                                            model)  # loss scaled by batch_size
            if rank != -1:
                loss *= opt.world_size  # gradient averaged between devices in DDP mode

            # Backward
            # scaler.scale(loss).backward()
            loss.backward()

            # Optimize
            if ni % accumulate == 0:
                # scaler.step(optimizer)  # optimizer.step
                # scaler.update()
                optimizer.step()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem,
                                      *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                if plots and ni < 3:
                    f = save_dir / f'train_batch{ni}.jpg'  # filename
                    Thread(target=plot_images,
                           args=(imgs, targets, paths, f),
                           daemon=True).start()
                    # if tb_writer:
                    #     tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    #     tb_writer.add_graph(model, imgs)  # add model to tensorboard
                elif plots and ni == 3 and wandb:
                    wandb.log({
                        "Mosaics": [
                            wandb.Image(str(x), caption=x.name)
                            for x in save_dir.glob('train*.jpg')
                        ]
                    })

            # xiezheng add
            # calculating No and updating alpha are executed every M=50 steps
            if ni > nw and (ni - nw) % opt.OAQ_m == 0:
                logger.info("ni={}, calculate No and updata alpha!".format(ni))
                No = calculate_No(device, model, oaq_conv_result,
                                  opt.conv_accumulator_bits, logger)
                lr_max = hyp['lr0']
                lr_curr = [x['lr']
                           for x in optimizer.param_groups][1]  # weight lr
                iteration_batch_size = imgs.size(0)
                update_alpha(device, model, No, iteration_batch_size, lr_max,
                             lr_curr, logger)

            # Test: calculate No and updata alpha
            # logger.info("ni={}, calculate No and updata alpha!".format(ni))
            # No = calculate_No(device, model, oaq_conv_result, opt.conv_accumulator_bits, logger)
            # lr_max = hyp['lr0']
            # lr_curr = [x['lr'] for x in optimizer.param_groups][1]  # weight lr
            # iteration_batch_size = imgs.size(0)
            # update_alpha(device, model, No, iteration_batch_size, lr_max, lr_curr, logger)

            # xiezheng add
            # clear hook results
            oaq_conv_result.clear()

            # end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            if ema:
                ema.update_attr(
                    model,
                    include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride'])
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                if opt.quantization:
                    tflite.freeze_model(ema.ema)

                results, maps, times = test.test(
                    opt.data,
                    batch_size=total_batch_size,
                    imgsz=imgsz_test,
                    model=ema.ema,
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=save_dir,
                    plots=plots and final_epoch,
                    log_imgs=opt.log_imgs if wandb else 0)

            # Write
            with open(results_file, 'a') as f:
                f.write(
                    s + '%10.4g' * 7 % results +
                    '\n')  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/results%s.txt' %
                          (results_file, opt.bucket, opt.name))

            # Log
            tags = [
                'train/box_loss',
                'train/obj_loss',
                'train/cls_loss',  # train loss
                'metrics/precision',
                'metrics/recall',
                'metrics/mAP_0.5',
                'metrics/mAP_0.5:0.95',
                'val/box_loss',
                'val/obj_loss',
                'val/cls_loss',  # val loss
                'x/lr0',
                'x/lr1',
                'x/lr2'
            ]  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if tb_writer:
                    tb_writer.add_scalar(tag, x, epoch)  # tensorboard
                if wandb:
                    wandb.log({tag: x})  # W&B

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, 'r') as f:  # create checkpoint
                    ckpt = {
                        'epoch':
                        epoch,
                        'best_fitness':
                        best_fitness,
                        'training_results':
                        f.read(),
                        'model':
                        ema.ema,
                        'optimizer':
                        None if final_epoch else optimizer.state_dict(),
                        'wandb_id':
                        wandb_run.id if wandb else None
                    }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    if rank in [-1, 0]:
        # Strip optimizers
        for f in [last, best]:
            if f.exists():  # is *.pt
                strip_optimizer(f)  # strip optimizer
                os.system('gsutil cp %s gs://%s/weights' %
                          (f, opt.bucket)) if opt.bucket else None  # upload

        # Plots
        if plots:
            plot_results(save_dir=save_dir)  # save as results.png
            if wandb:
                files = [
                    'results.png', 'precision_recall_curve.png',
                    'confusion_matrix.png'
                ]
                wandb.log({
                    "Results": [
                        wandb.Image(str(save_dir / f), caption=f)
                        for f in files if (save_dir / f).exists()
                    ]
                })
        logger.info('%g epochs completed in %.3f hours.\n' %
                    (epoch - start_epoch + 1, (time.time() - t0) / 3600))

        # Test best.pt
        if opt.data.endswith('coco.yaml') and nc == 80:  # if COCO
            if opt.quantization:
                model_test = torch.load(
                    best if best.exists() else last,
                    map_location=device)['model'].float().eval()
                tflite.freeze_model(model_test)

            else:
                model_test = attempt_load(best if best.exists() else last,
                                          device)
            results, _, _ = test.test(
                opt.data,
                batch_size=total_batch_size,
                imgsz=imgsz_test,
                model=model_test,
                single_cls=opt.single_cls,
                dataloader=testloader,
                save_dir=save_dir,
                save_json=True,  # use pycocotools
                plots=False)

            # Write
            with open(results_file, 'a') as f:
                f.write("Test best.pt:\n")
                f.write(
                    s + '%10.4g' * 7 % results +
                    '\n')  # P, R, [email protected], [email protected], val_loss(box, obj, cls)

    else:
        dist.destroy_process_group()

    wandb.run.finish() if wandb and wandb.run else None
    torch.cuda.empty_cache()
    return results
Beispiel #12
0
def detect():
    weights, imgsz = opt.checkpoint, opt.img_size

    # Initialize
    device = torch_utils.select_device(opt.device)
    if os.path.exists(opt.output_images):
        shutil.rmtree(opt.output_images)  # delete output folder
    os.makedirs(opt.output_images)  # make new output folder
    half = device.type != 'cpu'  # half precision only supported on CUDA

    with open(opt.project) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)
    names = data_dict['names']
    dest_object = data_dict[
        'dest_object'] if 'dest_object' in data_dict else names
    if 'name_map' in data_dict:
        name_map = data_dict['name_map']
    else:
        name_map = defaultdict()
        for x in dest_object:
            name_map[x] = x
    draw_names = set()
    for k, v in name_map.items():
        draw_names.add(v)
    draw_names = list(draw_names)
    colors = get_all_colors(len(draw_names))

    model = Model(data_dict).to(device)
    model.load_state_dict(torch.load(weights, map_location=device))
    model.to(device).eval()
    if half:
        model.half()  # to FP16

    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img
              ) if device.type != 'cpu' else None  # run once
    for f in os.listdir(opt.input_images):
        t1 = time.time()
        path = os.path.join(opt.input_images, f)
        im0s = cv2.imread(path)

        pred = forward_one(model, im0s, imgsz, device, half, opt)

        for i, det in enumerate(pred):  # detections per image
            if det is not None and len(det):
                for *xyxy, conf, cls in det:
                    if names[int(cls)] in dest_object:
                        draw_str = name_map[names[int(cls)]]
                        color = colors[draw_names.index(draw_str)]
                        label = '%s %.2f' % (draw_str, conf)
                        xmin, ymin, xmax, ymax = xyxy
                        cv2.rectangle(im0s, (xmin, ymin), (xmax, ymax),
                                      color=color,
                                      thickness=1)
                        cv2.putText(im0s, label, (xmin, ymax),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 1)

        cv2.imwrite(os.path.join(opt.output_images, f), im0s)
        print('%s Done. (%.3fs)' % (f, time.time() - t1))

    print('Done. (%.3fs)' % (time.time() - t0))
Beispiel #13
0
def detect(save_img=False):
    out, source, weights, view_img, save_txt, imgsz = \
        opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')

    # Initialize
    device = torch_utils.select_device(opt.device)
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    os.makedirs(out)  # make new output folder
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    google_utils.attempt_download(weights)

    # model = torch.load(weights, map_location=device)['model'].float()  # load to FP32
    from models.yolo import Model
    model = Model(model_cfg='/home/ai/yulu/yolov5/models/yolov5s.yaml').to(device)
    if os.path.exists(opt.weights):
        ckpt = torch.load('/home/ai/yulu/yolov5/weights/best0722.pt', map_location=device)
        state_dict = {key:ckpt['state_dict'][key] for key in model.state_dict().keys()}
        model.load_state_dict(state_dict)
    # ################
    # model = torch.load(weights, map_location=device)
    # ckpt = {'epoch': model['epoch'],
    #         'best_fitness': model['best_fitness'],
    #         'training_results': model['training_results'],
    #         'state_dict': model['model'].state_dict(),
    #         'optimizer': None}
    # #
    # #
    # # # Save last, best and delete
    # torch.save(ckpt, 'yolov5_adult_kid.pt')
    # ################

    # model.fuse()
    model.to(device).eval()

    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = torch_utils.load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model'])  # load weights
        modelc.to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        torch.backends.cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = ['child', 'adult']
    # names = model.names if hasattr(model, 'names') else model.modules.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]

    # Run inference
    t0 = time.time()
    # img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    # _ = model(img.half() if half else img) if device.type != 'cpu' else None  # run once
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = torch_utils.time_synchronized()
        # img_input = torch.cat([img[..., ::2, ::2], img[..., 1::2, ::2], img[..., ::2, 1::2], img[..., 1::2, 1::2]], 1)
        pred = model(img, augment=opt.augment)[0]
        # Apply NMS
        # pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres,
        #                            fast=True, classes=opt.classes, agnostic=opt.agnostic_nms)
        pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres,
                                    fast=False, classes=opt.classes, agnostic=True)
        t2 = torch_utils.time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s

            save_path = str(Path(out) / Path(p).name)
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]].float()  #  normalization gain whwh
            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                # Write results
                for *xyxy, conf, cls in det:
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        with open(save_path[:save_path.rfind('.')] + '.txt', 'a') as file:
                            file.write(('%g %g %g %g %g' + '\n') % (cls, *xywh))  # label format

                    if save_img or view_img:  # Add bbox to image
                        label = '%s %.2f' % (names[int(cls)], conf)
                        plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)

            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, t2 - t1))

            # Stream results
            if view_img:
                cv2.imshow(p, im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release()  # release previous video writer

                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        print('Results saved to %s' % os.getcwd() + os.sep + out)
        if platform == 'darwin':  # MacOS
            os.system('open ' + save_path)

    print('Done. (%.3fs)' % (time.time() - t0))