def create_net(num_classes, dnn='resnet20', **kwargs): ext = None if dnn in ['resnet20', 'resnet56', 'resnet110']: net = models.__dict__[dnn](num_classes=num_classes) elif dnn == 'resnet50': net = models.__dict__['resnet50'](num_classes=num_classes) elif dnn == 'mnistnet': net = MnistNet() elif dnn == 'mnistflnet': net = MnistFLNet() elif dnn == 'cifar10flnet': net = Cifar10FLNet() elif dnn == 'vgg16': net = models.VGG(dnn.upper()) elif dnn == 'alexnet': net = torchvision.models.alexnet() elif dnn == 'lstman4': net, ext = models.LSTMAN4(datapath=kwargs['datapath']) elif dnn == 'lstm': net = lstmpy.lstm(vocab_size=kwargs['vocab_size'], batch_size=kwargs['batch_size']) else: errstr = 'Unsupport neural network %s' % dnn logger.error(errstr) raise errstr return net, ext
def create_net(num_classes, dnn='resnet20', **kwargs): ext = None if dnn in ['resnet20', 'resnet56', 'resnet110']: net = models.__dict__[dnn](num_classes=num_classes) elif dnn == 'resnet50': net = torchvision.models.resnet50(num_classes=num_classes) elif dnn == 'resnet101': net = torchvision.models.resnet101(num_classes=num_classes) elif dnn == 'resnet152': net = torchvision.models.resnet152(num_classes=num_classes) elif dnn == 'densenet121': net = torchvision.models.densenet121(num_classes=num_classes) elif dnn == 'densenet161': net = torchvision.models.densenet161(num_classes=num_classes) elif dnn == 'densenet201': net = torchvision.models.densenet201(num_classes=num_classes) elif dnn == 'inceptionv4': net = models.inceptionv4(num_classes=num_classes) elif dnn == 'inceptionv3': net = torchvision.models.inception_v3(num_classes=num_classes) elif dnn == 'vgg16i': # vgg16 for imagenet net = torchvision.models.vgg16(num_classes=num_classes) elif dnn == 'googlenet': net = models.googlenet() elif dnn == 'mnistnet': net = MnistNet() elif dnn == 'fcn5net': net = models.FCN5Net() elif dnn == 'lenet': net = models.LeNet() elif dnn == 'lr': net = models.LinearRegression() elif dnn == 'vgg16': net = models.VGG(dnn.upper()) elif dnn == 'alexnet': #net = models.AlexNet() net = torchvision.models.alexnet() elif dnn == 'lstman4': net, ext = models.LSTMAN4(datapath=kwargs['datapath']) elif dnn == 'lstm': # model = lstm(embedding_dim=args.hidden_size, num_steps=args.num_steps, batch_size=args.batch_size, # vocab_size=vocab_size, num_layers=args.num_layers, dp_keep_prob=args.dp_keep_prob) net = lstmpy.lstm(vocab_size=kwargs['vocab_size'], batch_size=kwargs['batch_size']) else: errstr = 'Unsupport neural network %s' % dnn logger.error(errstr) raise errstr return net, ext
def create_net(num_classes, dnn='resnet20', **kwargs): ext = None if dnn in ['resnet20', 'resnet56', 'resnet110']: net = models.__dict__[dnn](num_classes=num_classes) elif dnn == 'resnet50': #net = models.__dict__['resnet50'](num_classes=num_classes) net = torchvision.models.resnet50(num_classes=num_classes) elif dnn == 'inceptionv4': net = models.inceptionv4(num_classes=num_classes) elif dnn == 'inceptionv3': net = torchvision.models.inception_v3(num_classes=num_classes) elif dnn == 'vgg16i': # vgg16 for imagenet net = torchvision.models.vgg16(num_classes=num_classes) elif dnn == 'googlenet': net = models.googlenet() elif dnn == 'mnistnet': net = MnistNet() elif dnn == 'fcn5net': net = models.FCN5Net() elif dnn == 'lenet': net = models.LeNet() elif dnn == 'lr': net = models.LinearRegression() elif dnn == 'vgg16': net = models.VGG(dnn.upper()) elif dnn == 'alexnet': net = torchvision.models.alexnet() elif dnn == 'lstman4': net, ext = models.LSTMAN4(datapath=kwargs['datapath']) elif dnn == 'lstm': net = lstmpy.lstm(vocab_size=kwargs['vocab_size'], batch_size=kwargs['batch_size']) else: errstr = 'Unsupport neural network %s' % dnn logger.error(errstr) raise errstr return net, ext