Beispiel #1
0
    def load_decoder(self):
        """
        Load the decoder.
        """

        assert self.args.decoder_files
        decoder_files = self.args.decoder_files.split(',')
        for decoder_file in decoder_files:
            assert os.path.exists(
                decoder_file), 'could not find %s' % decoder_file

        log('[Training] using %d input channels' % self.train_images.shape[3])
        decoder_units = list(map(int, self.args.decoder_units.split(',')))

        if len(decoder_files) > 1:
            log('[Training] loading multiple decoders')
            decoders = []
            for i in range(len(decoder_files)):
                decoder = models.LearnedDecoder(
                    self.args.latent_space_size,
                    resolution=(self.train_images.shape[3],
                                self.train_images.shape[1],
                                self.train_images.shape[2]),
                    architecture=self.args.decoder_architecture,
                    start_channels=self.args.decoder_channels,
                    activation=self.args.decoder_activation,
                    batch_normalization=not self.args.
                    decoder_no_batch_normalization,
                    units=decoder_units)

                state = State.load(decoder_files[i])
                decoder.load_state_dict(state.model)
                if self.args.use_gpu and not cuda.is_cuda(decoder):
                    decoder = decoder.cuda()
                decoders.append(decoder)

                decoder.eval()
                log('[Training] loaded %s' % decoder_files[i])
            self.decoder = models.SelectiveDecoder(
                decoders,
                resolution=(self.train_images.shape[3],
                            self.train_images.shape[1],
                            self.train_images.shape[2]))
        else:
            log('[Training] loading one decoder')
            decoder = models.LearnedDecoder(
                self.args.latent_space_size,
                resolution=(self.train_images.shape[3],
                            self.train_images.shape[1],
                            self.train_images.shape[2]),
                architecture=self.args.decoder_architecture,
                start_channels=self.args.decoder_channels,
                activation=self.args.decoder_activation,
                batch_normalization=not self.args.
                decoder_no_batch_normalization,
                units=decoder_units)

            state = State.load(decoder_files[0])
            decoder.load_state_dict(state.model)
            if self.args.use_gpu and not cuda.is_cuda(decoder):
                decoder = decoder.cuda()
            decoder.eval()
            log('[Training] read decoder')

            self.decoder = decoder

        self.decoder_classifier = models.DecoderClassifier(
            self.decoder, self.model)
Beispiel #2
0
    def load_data_and_model(self):
        """
        Load data and model.
        """

        self.test_images = utils.read_hdf5(self.args.test_images_file).astype(
            numpy.float32)
        if len(self.test_images.shape) < 4:
            self.test_images = numpy.expand_dims(self.test_images, axis=3)
        resolution = (self.test_images.shape[3], self.test_images.shape[1],
                      self.test_images.shape[2])
        log('[Visualization] read %s' % self.args.test_images_file)

        self.perturbations = utils.read_hdf5(
            self.args.perturbations_file).astype(numpy.float32)
        self.perturbations = numpy.swapaxes(self.perturbations, 0, 1)
        log('[Visualization] read %s' % self.args.perturbations_file)

        self.success = utils.read_hdf5(self.args.success_file)
        self.success = numpy.swapaxes(self.success, 0, 1)
        log('[Visualization] read %s' % self.args.success_file)

        self.accuracy = utils.read_hdf5(self.args.accuracy_file)
        log('[Visualization] read %s' % self.args.success_file)

        self.test_theta = utils.read_hdf5(self.args.test_theta_file).astype(
            numpy.float32)
        self.test_theta = self.test_theta[:self.perturbations.shape[0]]
        log('[Visualization] read %s' % self.args.test_theta_file)

        self.test_codes = utils.read_hdf5(self.args.test_codes_file).astype(
            numpy.int)
        self.test_codes = self.test_codes[:, self.args.label_index]
        self.N_class = numpy.max(self.test_codes) + 1
        self.test_codes = self.test_codes[:self.perturbations.shape[0]]
        log('[Visualization] read %s' % self.args.test_codes_file)

        network_units = list(map(int, self.args.network_units.split(',')))
        self.classifier = models.Classifier(
            self.N_class,
            resolution=resolution,
            architecture=self.args.network_architecture,
            activation=self.args.network_activation,
            batch_normalization=not self.args.network_no_batch_normalization,
            start_channels=self.args.network_channels,
            dropout=self.args.network_dropout,
            units=network_units)

        assert os.path.exists(
            self.args.classifier_file
        ), 'state file %s not found' % self.args.classifier_file
        state = State.load(self.args.classifier_file)
        log('[Visualization] read %s' % self.args.classifier_file)

        self.classifier.load_state_dict(state.model)
        if self.args.use_gpu and not cuda.is_cuda(self.classifier):
            log('[Visualization] classifier is not CUDA')
            self.classifier = self.classifier.cuda()
        log('[Visualization] loaded classifier')

        self.classifier.eval()
        log('[Visualization] set classifier to eval')

        assert self.args.decoder_files
        decoder_files = self.args.decoder_files.split(',')
        for decoder_file in decoder_files:
            assert os.path.exists(
                decoder_file), 'could not find %s' % decoder_file

        log('[Visualization] using %d input channels' %
            self.test_images.shape[3])
        decoder_units = list(map(int, self.args.decoder_units.split(',')))

        if len(decoder_files) > 1:
            log('[Visualization] loading multiple decoders')
            decoders = []
            for i in range(len(decoder_files)):
                decoder = models.LearnedDecoder(
                    self.args.latent_space_size,
                    resolution=resolution,
                    architecture=self.args.decoder_architecture,
                    start_channels=self.args.decoder_channels,
                    activation=self.args.decoder_activation,
                    batch_normalization=not self.args.
                    decoder_no_batch_normalization,
                    units=decoder_units)

                state = State.load(decoder_files[i])
                decoder.load_state_dict(state.model)
                if self.args.use_gpu and not cuda.is_cuda(decoder):
                    decoder = decoder.cuda()
                decoders.append(decoder)

                decoder.eval()
                log('[Visualization] loaded %s' % decoder_files[i])
            self.decoder = models.SelectiveDecoder(decoders,
                                                   resolution=resolution)
        else:
            log('[Visualization] loading one decoder')
            decoder = models.LearnedDecoder(
                self.args.latent_space_size,
                resolution=resolution,
                architecture=self.args.decoder_architecture,
                start_channels=self.args.decoder_channels,
                activation=self.args.decoder_activation,
                batch_normalization=not self.args.
                decoder_no_batch_normalization,
                units=decoder_units)

            state = State.load(decoder_files[0])
            decoder.load_state_dict(state.model)
            if self.args.use_gpu and not cuda.is_cuda(decoder):
                decoder = decoder.cuda()
            decoder.eval()
            log('[Visualization] read decoder')

            self.decoder = decoder
    def load_data(self):
        """
        Load data and model.
        """

        with logw('[Detection] read %s' % self.args.train_images_file):
            self.nearest_neighbor_images = utils.read_hdf5(self.args.train_images_file)
            assert len(self.nearest_neighbor_images.shape) == 3

        with logw('[Detection] read %s' % self.args.test_images_file):
            self.test_images = utils.read_hdf5(self.args.test_images_file)
            if len(self.test_images.shape) < 4:
                self.test_images = numpy.expand_dims(self.test_images, axis=3)

        with logw('[Detection] read %s' % self.args.perturbations_file):
            self.perturbations = utils.read_hdf5(self.args.perturbations_file)
            assert len(self.perturbations.shape) == 4

        with logw('[Detection] read %s' % self.args.success_file):
            self.success = utils.read_hdf5(self.args.success_file)

        with logw('[Detection] read %s' % self.args.accuracy_file):
            self.accuracy = utils.read_hdf5(self.args.accuracy_file)

        self.perturbations = numpy.swapaxes(self.perturbations, 0, 1)
        num_attempts = self.perturbations.shape[1]
        self.test_images = self.test_images[:self.perturbations.shape[0]]
        self.train_images = self.nearest_neighbor_images[:self.perturbations.shape[0]]
        self.accuracy = self.accuracy[:self.perturbations.shape[0]]

        self.perturbations = self.perturbations.reshape((self.perturbations.shape[0]*self.perturbations.shape[1], self.perturbations.shape[2], self.perturbations.shape[3]))
        self.success = numpy.swapaxes(self.success, 0, 1)
        self.success = self.success.reshape((self.success.shape[0]*self.success.shape[1]))

        self.accuracy = numpy.repeat(self.accuracy, num_attempts, axis=0)
        self.test_images = numpy.repeat(self.test_images, num_attempts, axis=0)
        self.train_images = numpy.repeat(self.train_images, num_attempts, axis=0)

        max_samples = self.args.max_samples
        self.success = self.success[:max_samples]
        self.accuracy = self.accuracy[:max_samples]
        self.perturbations = self.perturbations[:max_samples]
        self.test_images = self.test_images[:max_samples]
        self.train_images = self.train_images[:max_samples]

        if self.args.mode == 'true':
            assert self.args.database_file
            assert self.args.test_codes_file
            assert self.args.test_theta_file

            self.test_codes = utils.read_hdf5(self.args.test_codes_file)
            log('[Detection] read %s' % self.args.test_codes_file)

            self.test_theta = utils.read_hdf5(self.args.test_theta_file)
            log('[Detection] read %s' % self.args.test_theta_file)

            self.test_codes = self.test_codes[:self.perturbations.shape[0]]
            self.test_theta = self.test_theta[:self.perturbations.shape[0]]

            self.test_codes = numpy.repeat(self.test_codes, num_attempts, axis=0)
            self.test_theta = numpy.repeat(self.test_theta, num_attempts, axis=0)

            self.test_codes = self.test_codes[:max_samples]
            self.test_theta = self.test_theta[:max_samples]

            database = utils.read_hdf5(self.args.database_file)
            log('[Detection] read %s' % self.args.database_file)

            self.N_font = database.shape[0]
            self.N_class = database.shape[1]
            self.N_theta = self.test_theta.shape[1]

            database = database.reshape((database.shape[0]*database.shape[1], database.shape[2], database.shape[3]))
            database = torch.from_numpy(database)
            if self.args.use_gpu:
                database = database.cuda()
            database = torch.autograd.Variable(database, False)

            self.model = models.AlternativeOneHotDecoder(database, self.N_font, self.N_class, self.N_theta)
            self.model.eval()
            log('[Detection] initialized decoder')
        elif self.args.mode == 'appr':
            assert self.args.decoder_files
            assert self.args.test_codes_file
            assert self.args.test_theta_file

            self.test_codes = utils.read_hdf5(self.args.test_codes_file)
            log('[Detection] read %s' % self.args.test_codes_file)

            self.test_theta = utils.read_hdf5(self.args.test_theta_file)
            log('[Detection] read %s' % self.args.test_theta_file)

            self.test_codes = self.test_codes[:self.perturbations.shape[0]]
            self.test_theta = self.test_theta[:self.perturbations.shape[0]]

            self.test_codes = numpy.repeat(self.test_codes, num_attempts, axis=0)
            self.test_theta = numpy.repeat(self.test_theta, num_attempts, axis=0)

            self.test_codes = self.test_codes[:max_samples]
            self.test_theta = self.test_theta[:max_samples]

            assert self.args.decoder_files
            decoder_files = self.args.decoder_files.split(',')
            for decoder_file in decoder_files:
                assert os.path.exists(decoder_file), 'could not find %s' % decoder_file

            resolution = [1 if len(self.test_images.shape) <= 3 else self.test_images.shape[3], self.test_images.shape[1], self.test_images.shape[2]]
            decoder_units = list(map(int, self.args.decoder_units.split(',')))

            if len(decoder_files) > 1:
                log('[Detection] loading multiple decoders')
                decoders = []
                for i in range(len(decoder_files)):
                    decoder = models.LearnedDecoder(self.args.latent_space_size,
                                                    resolution=resolution,
                                                    architecture=self.args.decoder_architecture,
                                                    start_channels=self.args.decoder_channels,
                                                    activation=self.args.decoder_activation,
                                                    batch_normalization=not self.args.decoder_no_batch_normalization,
                                                    units=decoder_units)

                    state = State.load(decoder_files[i])
                    decoder.load_state_dict(state.model)
                    if self.args.use_gpu and not cuda.is_cuda(decoder):
                        decoder = decoder.cuda()
                    decoders.append(decoder)

                    decoder.eval()
                    log('[Detection] loaded %s' % decoder_files[i])
                self.model = models.SelectiveDecoder(decoders, resolution=resolution)
            else:
                log('[Detection] loading one decoder')
                decoder = models.LearnedDecoder(self.args.latent_space_size,
                                                resolution=resolution,
                                                architecture=self.args.decoder_architecture,
                                                start_channels=self.args.decoder_channels,
                                                activation=self.args.decoder_activation,
                                                batch_normalization=not self.args.decoder_no_batch_normalization,
                                                units=decoder_units)

                state = State.load(decoder_files[0])
                decoder.load_state_dict(state.model)
                if self.args.use_gpu and not cuda.is_cuda(decoder):
                    decoder = decoder.cuda()
                decoder.eval()
                log('[Detection] read decoder')

                self.model = decoder
Beispiel #4
0
    def load_model(self):
        """
        Load model.
        """

        assert self.args.decoder_files
        decoder_files = self.args.decoder_files.split(',')
        for decoder_file in decoder_files:
            assert os.path.exists(
                decoder_file), 'could not find %s' % decoder_file

        decoder_units = list(map(int, self.args.decoder_units.split(',')))
        log('[Attack] using %d input channels' % self.test_images.shape[3])

        if len(decoder_files) > 1:
            log('[Attack] loading multiple decoders')
            decoders = []
            for i in range(len(decoder_files)):
                decoder = models.LearnedDecoder(
                    self.args.latent_space_size,
                    resolution=(self.test_images.shape[3],
                                self.test_images.shape[1],
                                self.test_images.shape[2]),
                    architecture=self.args.decoder_architecture,
                    start_channels=self.args.decoder_channels,
                    activation=self.args.decoder_activation,
                    batch_normalization=not self.args.
                    decoder_no_batch_normalization,
                    units=decoder_units)
                log(decoder)
                state = State.load(decoder_files[i])
                decoder.load_state_dict(state.model)
                if self.args.use_gpu and not cuda.is_cuda(decoder):
                    decoder = decoder.cuda()
                decoders.append(decoder)

                decoder.eval()
                log('[Attack] loaded %s' % decoder_files[i])
            decoder = models.SelectiveDecoder(
                decoders,
                resolution=(self.test_images.shape[3],
                            self.test_images.shape[1],
                            self.test_images.shape[2]))
        else:
            log('[Attack] loading one decoder')
            decoder = models.LearnedDecoder(
                self.args.latent_space_size,
                resolution=(self.test_images.shape[3],
                            self.test_images.shape[1],
                            self.test_images.shape[2]),
                architecture=self.args.decoder_architecture,
                start_channels=self.args.decoder_channels,
                activation=self.args.decoder_activation,
                batch_normalization=not self.args.
                decoder_no_batch_normalization,
                units=decoder_units)

            state = State.load(decoder_files[0])
            decoder.load_state_dict(state.model)
            if self.args.use_gpu and not cuda.is_cuda(decoder):
                decoder = decoder.cuda()
            decoder.eval()
            log('[Attack] read decoder')

        classifier_units = list(map(int, self.args.network_units.split(',')))
        classifier = models.Classifier(
            self.N_class,
            resolution=(self.test_images.shape[3], self.test_images.shape[1],
                        self.test_images.shape[2]),
            architecture=self.args.network_architecture,
            activation=self.args.network_activation,
            batch_normalization=not self.args.network_no_batch_normalization,
            start_channels=self.args.network_channels,
            dropout=self.args.network_dropout,
            units=classifier_units)

        assert os.path.exists(
            self.args.classifier_file
        ), 'state file %s not found' % self.args.classifier_file
        state = State.load(self.args.classifier_file)
        log('[Attack] read %s' % self.args.classifier_file)

        classifier.load_state_dict(state.model)
        if self.args.use_gpu and not cuda.is_cuda(classifier):
            log('[Attack] classifier is not CUDA')
            classifier = classifier.cuda()
        log('[Attack] loaded classifier')

        # !
        classifier.eval()
        log('[Attack] set classifier to eval')

        self.model = models.DecoderClassifier(decoder, classifier)
Beispiel #5
0
    def load_data(self):
        """
        Load data and model.
        """

        self.test_images = utils.read_hdf5(self.args.test_images_file).astype(numpy.float32)
        log('[Testing] read %s' % self.args.test_images_file)

        # For handling both color and gray images.
        if len(self.test_images.shape) < 4:
            self.test_images = numpy.expand_dims(self.test_images, axis=3)
            log('[Testing] no color images, adjusted size')
        self.resolution = self.test_images.shape[2]
        log('[Testing] resolution %d' % self.resolution)

        self.train_images = utils.read_hdf5(self.args.train_images_file).astype(numpy.float32)
        # !
        self.train_images = self.train_images.reshape((self.train_images.shape[0], -1))
        log('[Testing] read %s' % self.args.train_images_file)

        self.test_theta = utils.read_hdf5(self.args.test_theta_file).astype(numpy.float32)
        log('[Testing] read %s' % self.args.test_theta_file)

        self.train_theta = utils.read_hdf5(self.args.train_theta_file).astype(numpy.float32)
        log('[Testing] read %s' % self.args.train_theta_file)

        self.test_codes = utils.read_hdf5(self.args.test_codes_file).astype(numpy.int)
        self.test_codes = self.test_codes[:, self.args.label_index]
        self.N_class = numpy.max(self.test_codes) + 1
        log('[Testing] read %s' % self.args.test_codes_file)

        self.accuracy = utils.read_hdf5(self.args.accuracy_file)
        log('[Testing] read %s' % self.args.accuracy_file)

        self.perturbations = utils.read_hdf5(self.args.perturbations_file).astype(numpy.float32)
        self.N_attempts = self.perturbations.shape[0]
        assert not numpy.any(self.perturbations != self.perturbations), 'NaN in perturbations'

        # First, repeat relevant data.
        self.perturbation_theta = numpy.repeat(self.test_theta[:self.perturbations.shape[1]], self.N_attempts, axis=0)
        self.perturbation_codes = numpy.repeat(self.test_codes[:self.perturbations.shape[1]], self.N_attempts, axis=0)
        self.perturbation_codes = numpy.squeeze(self.perturbation_codes)
        self.accuracy = numpy.repeat(self.accuracy[:self.perturbations.shape[1]], self.N_attempts, axis=0)

        # Then, reshape the perturbations!
        self.perturbations = numpy.swapaxes(self.perturbations, 0, 1)
        self.perturbations = self.perturbations.reshape((self.perturbations.shape[0] * self.perturbations.shape[1], -1))
        log('[Testing] read %s' % self.args.perturbations_file)

        self.success = utils.read_hdf5(self.args.success_file)
        self.success = numpy.swapaxes(self.success, 0, 1)
        self.success = self.success.reshape((self.success.shape[0] * self.success.shape[1]))
        log('[Testing] read %s' % self.args.success_file)

        assert self.args.decoder_files
        decoder_files = self.args.decoder_files.split(',')
        for decoder_file in decoder_files:
            assert os.path.exists(decoder_file), 'could not find %s' % decoder_file

        log('[Testing] using %d input channels' % self.test_images.shape[3])
        decoder_units = list(map(int, self.args.decoder_units.split(',')))

        if len(decoder_files) > 1:
            log('[Testing] loading multiple decoders')
            decoders = []
            for i in range(len(decoder_files)):
                decoder = models.LearnedDecoder(self.args.latent_space_size, resolution=(self.test_images.shape[3], self.test_images.shape[1], self.test_images.shape[2]),
                                                architecture=self.args.decoder_architecture,
                                                start_channels=self.args.decoder_channels,
                                                activation=self.args.decoder_activation,
                                                batch_normalization=not self.args.decoder_no_batch_normalization,
                                                units=decoder_units)

                state = State.load(decoder_files[i])
                decoder.load_state_dict(state.model)
                if self.args.use_gpu and not cuda.is_cuda(decoder):
                    decoder = decoder.cuda()
                decoders.append(decoder)

                decoder.eval()
                log('[Testing] loaded %s' % decoder_files[i])
            self.model = models.SelectiveDecoder(decoders, resolution=(self.test_images.shape[3], self.test_images.shape[1], self.test_images.shape[2]))
        else:
            log('[Testing] loading one decoder')
            decoder = models.LearnedDecoder(self.args.latent_space_size, resolution=(self.test_images.shape[3], self.test_images.shape[1], self.test_images.shape[2]),
                                            architecture=self.args.decoder_architecture,
                                            start_channels=self.args.decoder_channels,
                                            activation=self.args.decoder_activation,
                                            batch_normalization=not self.args.decoder_no_batch_normalization,
                                            units=decoder_units)

            state = State.load(decoder_files[0])
            decoder.load_state_dict(state.model)
            if self.args.use_gpu and not cuda.is_cuda(decoder):
                decoder = decoder.cuda()
            decoder.eval()
            log('[Testing] read decoder')

            self.model = decoder