Beispiel #1
0
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    if args.dataset == 'physionet':
        data_obj = utils.get_physionet_data(args, 'cpu', args.quantization)
    elif args.dataset == 'mimiciii':
        data_obj = utils.get_mimiciii_data(args)

    train_loader = data_obj["train_dataloader"]
    test_loader = data_obj["test_dataloader"]
    val_loader = data_obj["val_dataloader"]
    dim = data_obj["input_dim"]

    if args.enc == 'enc_rnn3':
        rec = models.enc_rnn3(dim,
                              torch.linspace(0, 1., 128),
                              args.latent_dim,
                              args.rec_hidden,
                              128,
                              learn_emb=args.learn_emb).to(device)
    elif args.enc == 'mtan_rnn':
        rec = models.enc_mtan_rnn(dim,
                                  torch.linspace(0, 1., args.num_ref_points),
                                  args.latent_dim,
                                  args.rec_hidden,
                                  embed_time=128,
                                  learn_emb=args.learn_emb,
                                  num_heads=args.enc_num_heads).to(device)

    if args.dec == 'rnn3':
        dec = models.dec_rnn3(dim,
                              torch.linspace(0, 1., 128),
                              args.latent_dim,
Beispiel #2
0
    if args.dataset == "toy":
        data_obj = utils.kernel_smoother_data_gen(args, alpha=100.0, seed=0)
    elif args.dataset == "physionet":
        data_obj = utils.get_physionet_data(args, "cpu", args.quantization)

    train_loader = data_obj["train_dataloader"]
    test_loader = data_obj["test_dataloader"]
    dim = data_obj["input_dim"]

    # model
    if args.enc == "enc_rnn3":
        rec = models.enc_rnn3(
            dim,
            torch.linspace(0, 1.0, args.num_ref_points),
            args.latent_dim,
            args.rec_hidden,
            128,
            learn_emb=args.learn_emb,
        ).to(device)
    elif args.enc == "mtan_rnn":
        rec = models.enc_mtan_rnn(
            dim,
            torch.linspace(0, 1.0, args.num_ref_points),
            args.latent_dim,
            args.rec_hidden,
            embed_time=128,
            learn_emb=args.learn_emb,
            num_heads=args.enc_num_heads,
        ).to(device)

    if args.dec == "rnn3":