Beispiel #1
0
    def _add_embedding_lookup(self):
        with tf.variable_scope('word_embeddings'):
            if self.cfg.use_word_emb:
                _word_emb = tf.Variable(self.cfg.word_emb, name='_word_emb', trainable=self.cfg.finetune_emb,
                                        dtype=tf.float32)
            else:
                _word_emb = tf.get_variable(name='_word_emb', shape=[self.cfg.vocab_size, self.cfg.word_dim],
                                            trainable=True, dtype=tf.float32)
            word_emb = tf.nn.embedding_lookup(_word_emb, self.word_ids, name='word_emb')

        if self.cfg.use_char_emb:  # use cnn to generate chars representation
            with tf.variable_scope('char_embeddings'):
                _char_emb = tf.get_variable(name='_char_emb', dtype=tf.float32, trainable=True,
                                            shape=[self.cfg.char_vocab_size, self.cfg.char_dim])
                char_emb = tf.nn.embedding_lookup(_char_emb, self.char_ids, name='char_emb')
                char_emb_shape = tf.shape(char_emb)
                char_rep = multi_conv1d(char_emb, self.cfg.filter_sizes, self.cfg.heights, "VALID",  self.is_train,
                                        self.cfg.keep_prob, scope="char_cnn")
                char_rep = tf.reshape(char_rep, [char_emb_shape[0], char_emb_shape[1], self.cfg.char_rep_dim])
                word_emb = tf.concat([word_emb, char_rep], axis=-1)  # concat word emb and corresponding char rep
        if self.cfg.use_highway:
            self.word_emb = highway_network(word_emb, self.cfg.highway_num_layers, bias=True, is_train=self.is_train,
                                            keep_prob=self.cfg.keep_prob)
        else:
            self.word_emb = dropout(word_emb, keep_prob=self.cfg.keep_prob, is_train=self.is_train)
        print('word embedding shape: {}'.format(self.word_emb.get_shape().as_list()))
Beispiel #2
0
 def _build_embedding_op(self):
     with tf.variable_scope("embeddings"):
         if not self.cfg["use_pretrained"]:
             self.word_embeddings = tf.get_variable(name="emb", dtype=tf.float32, trainable=True,
                                                    shape=[self.word_vocab_size, self.cfg["emb_dim"]])
         else:
             word_emb_1 = tf.Variable(np.load(self.cfg["pretrained_emb"])["embeddings"], name="word_emb_1",
                                      dtype=tf.float32, trainable=self.cfg["tuning_emb"])
             word_emb_2 = tf.get_variable(name="word_emb_2", shape=[3, self.cfg["emb_dim"]], dtype=tf.float32,
                                          trainable=True)  # For UNK, NUM and END
             self.word_embeddings = tf.concat([word_emb_1, word_emb_2], axis=0)
         word_emb = tf.nn.embedding_lookup(self.word_embeddings, self.words, name="word_emb")
         print("word embedding shape: {}".format(word_emb.get_shape().as_list()))
         if self.cfg["use_chars"]:
             self.char_embeddings = tf.get_variable(name="c_emb", dtype=tf.float32, trainable=True,
                                                    shape=[self.char_vocab_size, self.cfg["char_emb_dim"]])
             char_emb = tf.nn.embedding_lookup(self.char_embeddings, self.chars, name="chars_emb")
             # train char representation
             if self.cfg["char_represent_method"] == "rnn":
                 char_bi_rnn = BiRNN(self.cfg["char_num_units"], cell_type=self.cfg["cell_type"], scope="c_bi_rnn")
                 char_represent = char_bi_rnn(char_emb, self.char_seq_len, use_last_state=True)
             else:
                 char_represent = multi_conv1d(char_emb, self.filter_sizes, self.channel_sizes,
                                               drop_rate=self.drop_rate,
                                               is_train=self.is_train)
             print("chars representation shape: {}".format(char_represent.get_shape().as_list()))
             word_emb = tf.concat([word_emb, char_represent], axis=-1)
         if self.cfg["use_highway"]:
             self.word_emb = highway_network(word_emb, self.cfg["highway_layers"], use_bias=True, bias_init=0.0,
                                             keep_prob=self.keep_prob, is_train=self.is_train)
         else:
             self.word_emb = tf.layers.dropout(word_emb, rate=self.drop_rate, training=self.is_train)
         print("word and chars concatenation shape: {}".format(self.word_emb.get_shape().as_list()))
    def _build_embeddings_op(self):
        with tf.variable_scope('words'):
            if self.cfg.use_pretrained:
                _word_embeddings = tf.Variable(self.cfg.glove_embeddings,
                                               name='_word_embeddings',
                                               dtype=tf.float32,
                                               trainable=self.cfg.finetune_emb)
            else:
                _word_embeddings = tf.get_variable(
                    name='_word_embeddings',
                    dtype=tf.float32,
                    trainable=True,
                    shape=[self.cfg.word_vocab_size, self.cfg.word_dim])
            word_embeddings = tf.nn.embedding_lookup(_word_embeddings,
                                                     self.word_ids,
                                                     name="word_embeddings")

        with tf.variable_scope('char_represent'):
            if self.cfg.use_char_emb:
                _char_embeddings = tf.get_variable(
                    name='_char_embeddings',
                    dtype=tf.float32,
                    trainable=True,
                    shape=[self.cfg.char_vocab_size, self.cfg.char_dim])
                char_embeddings = tf.nn.embedding_lookup(
                    _char_embeddings, self.char_ids, name="char_embeddings")
                s = tf.shape(
                    char_embeddings
                )  # [batch size, max length of sentence, max length of word, char_dim]
                output = multi_conv1d(char_embeddings,
                                      self.cfg.filter_sizes,
                                      self.cfg.heights,
                                      "VALID",
                                      self.is_train,
                                      self.keep_prob,
                                      scope="char_cnn")
                # shape = (batch size, max sentence length, char representation size)
                self.char_output = tf.reshape(
                    output, [s[0], s[1], self.cfg.char_out_size])
                word_embeddings = tf.concat(
                    [word_embeddings, self.char_output], axis=-1)

        if self.cfg.use_highway:
            with tf.variable_scope("highway"):
                self.word_embeddings = highway_network(
                    word_embeddings,
                    self.cfg.highway_num_layers,
                    bias=True,
                    is_train=self.is_train,
                    keep_prob=self.keep_prob)
        else:  # directly dropout before model_op
            self.word_embeddings = dropout(word_embeddings,
                                           keep_prob=self.keep_prob,
                                           is_train=self.is_train)
        print('word embeddings shape: {}'.format(
            self.word_embeddings.get_shape().as_list()))
Beispiel #4
0
    def _add_embedding_lookup(self):
        with tf.variable_scope('word_embeddings'):
            if self.cfg.use_word_emb:
                _word_emb = tf.Variable(self.cfg.word_emb,
                                        name='_word_emb',
                                        trainable=self.cfg.finetune_emb,
                                        dtype=tf.float32)
            else:
                _word_emb = tf.get_variable(
                    name='_word_emb',
                    shape=[self.cfg.vocab_size, self.cfg.word_dim],
                    trainable=True,
                    dtype=tf.float32)
            word_emb = tf.nn.embedding_lookup(_word_emb,
                                              self.word_ids,
                                              name='word_emb')

        if self.cfg.use_char_emb:  # use cnn to generate chars representation
            with tf.variable_scope('char_embeddings'):
                _char_emb = tf.get_variable(
                    name='_char_emb',
                    dtype=tf.float32,
                    trainable=True,
                    shape=[self.cfg.char_vocab_size, self.cfg.char_dim])
                char_emb = tf.nn.embedding_lookup(_char_emb,
                                                  self.char_ids,
                                                  name='char_emb')
                char_emb_shape = tf.shape(char_emb)
                char_rep = multi_conv1d(char_emb,
                                        self.cfg.filter_sizes,
                                        self.cfg.heights,
                                        "VALID",
                                        self.is_train,
                                        self.cfg.keep_prob,
                                        scope="char_cnn")
                char_rep = tf.reshape(char_rep, [
                    char_emb_shape[0], char_emb_shape[1], self.cfg.char_rep_dim
                ])
                word_emb = tf.concat(
                    [word_emb, char_rep],
                    axis=-1)  # concat word emb and corresponding char rep
        if self.cfg.use_highway:
            self.word_emb = highway_network(word_emb,
                                            self.cfg.highway_num_layers,
                                            bias=True,
                                            is_train=self.is_train,
                                            keep_prob=self.cfg.keep_prob)
        else:
            self.word_emb = dropout(word_emb,
                                    keep_prob=self.cfg.keep_prob,
                                    is_train=self.is_train)
        print('word embedding shape: {}'.format(
            self.word_emb.get_shape().as_list()))
    def _build_embeddings_op(self):
        with tf.variable_scope('words'):
            if self.cfg.use_pretrained:
                _word_embeddings = tf.Variable(self.cfg.glove_embeddings,
                                               name='_word_embeddings',
                                               dtype=tf.float32,
                                               trainable=self.cfg.finetune_emb)
            else:
                _word_embeddings = tf.get_variable(
                    name='_word_embeddings',
                    dtype=tf.float32,
                    trainable=True,
                    shape=[self.cfg.word_vocab_size, self.cfg.word_dim])
            word_embeddings = tf.nn.embedding_lookup(_word_embeddings,
                                                     self.word_ids,
                                                     name="word_embeddings")

        with tf.variable_scope('char_rep_method'):
            if self.cfg.use_char_emb:
                _char_embeddings = tf.get_variable(
                    name='_char_embeddings',
                    dtype=tf.float32,
                    trainable=True,
                    shape=[self.cfg.char_vocab_size, self.cfg.char_dim])
                char_embeddings = tf.nn.embedding_lookup(
                    _char_embeddings, self.char_ids, name="char_embeddings")
                s = tf.shape(
                    char_embeddings
                )  # [batch size, max length of sentence, max length of word, char_dim]
                if self.cfg.char_rep_method == 'rnn':
                    char_embeddings = tf.reshape(
                        char_embeddings,
                        shape=[s[0] * s[1], s[-2], self.cfg.char_dim])
                    word_lengths = tf.reshape(self.word_lengths,
                                              shape=[s[0] * s[1]])
                    char_bi_rnn = BiRNN(self.cfg.num_units_char,
                                        scope='char_rnn')
                    output = char_bi_rnn(char_embeddings,
                                         word_lengths,
                                         return_last_state=True)
                else:  # cnn model for char representation
                    output = multi_conv1d(char_embeddings,
                                          self.cfg.filter_sizes,
                                          self.cfg.heights,
                                          "VALID",
                                          self.is_train,
                                          self.keep_prob,
                                          scope="char_cnn")
                # shape = (batch size, max sentence length, char representation size)
                self.char_output = tf.reshape(
                    output, [s[0], s[1], self.cfg.char_out_size])
                word_embeddings = tf.concat(
                    [word_embeddings, self.char_output], axis=-1)
        if self.cfg.use_highway:
            with tf.variable_scope("highway"):
                self.word_embeddings = highway_network(
                    word_embeddings,
                    self.cfg.highway_num_layers,
                    bias=True,
                    is_train=self.is_train,
                    keep_prob=self.keep_prob)
        else:  # directly dropout before model_op
            self.word_embeddings = dropout(word_embeddings,
                                           keep_prob=self.keep_prob,
                                           is_train=self.is_train)
    def _add_embedding_lookup(self):
        with tf.variable_scope('word_embeddings'):
            if self.cfg.use_word_emb:
                #注意这种用法  声明具有初始值的变量
                _word_emb = tf.Variable(self.cfg.word_emb,
                                        name='_word_emb',
                                        trainable=self.cfg.finetune_emb,
                                        dtype=tf.float32)
            else:
                #声明一般变量
                _word_emb = tf.get_variable(
                    name='_word_emb',
                    shape=[self.cfg.vocab_size, self.cfg.word_dim],
                    trainable=True,
                    dtype=tf.float32)
            word_emb = tf.nn.embedding_lookup(_word_emb,
                                              self.word_ids,
                                              name='word_emb')

        if self.cfg.use_char_emb:  # use cnn to generate chars representation
            with tf.variable_scope('char_embeddings'):
                _char_emb = tf.get_variable(
                    name='_char_emb',
                    dtype=tf.float32,
                    trainable=True,
                    shape=[self.cfg.char_vocab_size, self.cfg.char_dim])
                #在理解的时候采用一个样本进行理解
                char_emb = tf.nn.embedding_lookup(
                    _char_emb, self.char_ids, name='char_emb'
                )  # 这里我要搞清楚这个更!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                print("许海明的测试-------》char_emb的形状",
                      char_emb.get_shape().as_list())

                #这一步类似于一个图片 不过不是RGB  而是一句话最长的单词的数目
                char_emb_shape = tf.shape(char_emb)  #这里需要注意一下 这里的形状要搞清楚
                # [-1,max_len_sen,char_out_size*len([fileter])]
                char_rep = multi_conv1d(char_emb,
                                        self.cfg.filter_sizes,
                                        self.cfg.heights,
                                        "VALID",
                                        self.is_train,
                                        self.cfg.keep_prob,
                                        scope="char_cnn")

                char_rep = tf.reshape(char_rep, [
                    char_emb_shape[0], char_emb_shape[1], self.cfg.char_rep_dim
                ])
                word_emb = tf.concat(
                    [word_emb, char_rep],
                    axis=-1)  # concat word emb and corresponding char rep

        if self.cfg.use_highway:
            self.word_emb = highway_network(word_emb,
                                            self.cfg.highway_num_layers,
                                            bias=True,
                                            is_train=self.is_train,
                                            keep_prob=self.cfg.keep_prob)
        else:
            self.word_emb = dropout(word_emb,
                                    keep_prob=self.cfg.keep_prob,
                                    is_train=self.is_train)
        print('word embedding shape: {}'.format(
            self.word_emb.get_shape().as_list()))