Beispiel #1
0
        aug_adj2 = aug_adj2.cuda()

    labels = labels.cuda()
    idx_train = idx_train.cuda()
    idx_val = idx_val.cuda()
    idx_test = idx_test.cuda()

b_xent = nn.BCEWithLogitsLoss()
xent = nn.CrossEntropyLoss()
cnt_wait = 0
best = 1e9
best_t = 0

for epoch in range(nb_epochs):

    model.train()
    optimiser.zero_grad()

    idx = np.random.permutation(nb_nodes)
    shuf_fts = features[:, idx, :]

    lbl_1 = torch.ones(batch_size, nb_nodes)
    lbl_2 = torch.zeros(batch_size, nb_nodes)
    lbl = torch.cat((lbl_1, lbl_2), 1)

    if torch.cuda.is_available():
        shuf_fts = shuf_fts.cuda()
        lbl = lbl.cuda()

    logits = model(features,
                   shuf_fts,
Beispiel #2
0
def main():

    saved_graph = os.path.join('assets', 'saved_graphs', 'best_dgi.pickle')
    saved_logreg = os.path.join('assets', 'saved_graphs', 'best_logreg.pickle')

    dataset = 'cora'

    # training params
    batch_size = 1
    nb_epochs = 10000
    patience = 25
    lr = 0.001
    l2_coef = 0.0
    drop_prob = 0.0
    hid_units = 512
    sparse = True
    nonlinearity = 'prelu' # special name to separate parameters

    adj, features, labels, idx_train, idx_test, idx_val = process.load_data(dataset)

    features, _ = process.preprocess_features(features)

    nb_nodes = features.shape[0]
    ft_size = features.shape[1]
    nb_classes = labels.shape[1]

    adj = process.normalize_adj(adj + sp.eye(adj.shape[0]))

    if sparse:
        adj = process.sparse_mx_to_torch_sparse_tensor(adj)
    else:
        adj = (adj + sp.eye(adj.shape[0])).todense()

    features = torch.FloatTensor(features[np.newaxis])
    if not sparse:
        adj = torch.FloatTensor(adj[np.newaxis])
    labels = torch.FloatTensor(labels[np.newaxis])
    idx_train = torch.LongTensor(idx_train)
    idx_val = torch.LongTensor(idx_val)
    idx_test = torch.LongTensor(idx_test)

    print("Training Nodes: {}, Testing Nodes: {}, Validation Nodes: {}".format(len(idx_train), len(idx_test), len(idx_val)))

    model = DGI(ft_size, hid_units, nonlinearity)
    optimiser = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=l2_coef)

    if torch.cuda.is_available():
        print('Using CUDA')
        model.cuda()
        features = features.cuda()
        if sparse:
            sp_adj = sp_adj.cuda()
        else:
            adj = adj.cuda()
        labels = labels.cuda()
        idx_train = idx_train.cuda()
        idx_val = idx_val.cuda()
        idx_test = idx_test.cuda()

    b_xent = nn.BCEWithLogitsLoss()
    xent = nn.CrossEntropyLoss()
    cant_wait = 0
    best = 1e9
    best_t = 0

    if not os.path.exists(saved_graph):
        pbar = trange(nb_epochs)
        for epoch in pbar:
            model.train()
            optimiser.zero_grad()

            idx = np.random.permutation(nb_nodes)
            shuf_fts = features[:, idx, :]

            lbl_1 = torch.ones(batch_size, nb_nodes)
            lbl_2 = torch.zeros(batch_size, nb_nodes)
            lbl = torch.cat((lbl_1, lbl_2), 1)

            if torch.cuda.is_available():
                shuf_fts = shuf_fts.cuda()
                lbl = lbl.cuda()

            logits = model(features, shuf_fts, adj, sparse, None, None, None)

            loss = b_xent(logits, lbl)

            pbar.desc = 'Loss: {:.4f}'.format(loss)

            if loss < best:
                best = loss
                best_t = epoch
                cnt_wait = 0
                torch.save(model.state_dict(), saved_graph)
            else:
                cant_wait += 1

            if cant_wait == patience:
                tqdm.write('Early stopping!')
                break

            loss.backward()
            optimiser.step()


    print('Loading {}th Epoch'.format(best_t) if best_t else 'Loading Existing Graph')
    model.load_state_dict(torch.load(saved_graph))

    embeds, _ = model.embed(features, adj, sparse, None)
    train_embs = embeds[0, idx_train]
    val_embs = embeds[0, idx_val]
    test_embs = embeds[0, idx_test]

    train_lbls = torch.argmax(labels[0, idx_train], dim=1)
    val_lbls = torch.argmax(labels[0, idx_val], dim=1)
    test_lbls = torch.argmax(labels[0, idx_test], dim=1)

    tot = torch.zeros(1)
    if torch.cuda.is_available():
        tot = tot.cuda()

    accs = []

    print("\nValidation:")
    pbar = trange(50)
    for _ in pbar:
        log = LogReg(hid_units, nb_classes)
        opt = torch.optim.Adam(log.parameters(), lr=0.01, weight_decay=0.0)

        pat_steps = 0
        best_acc = torch.zeros(1)
        if torch.cuda.is_available():
            log.cuda()
            best_acc = best_acc.cuda()
        for _ in range(100):
            log.train()
            opt.zero_grad()

            logits = log(train_embs)
            loss = xent(logits, train_lbls)

            loss.backward()
            opt.step()

        logits = log(test_embs)
        preds = torch.argmax(logits, dim=1)
        acc = torch.sum(preds == test_lbls).float() / test_lbls.shape[0]
        accs.append(acc * 100)
        pbar.desc = "Accuracy: {:.2f}%".format(100 * acc)
        tot += acc

    torch.save(log.state_dict(), saved_logreg)

    accs = torch.stack(accs)
    print('Average Accuracy: {:.2f}%'.format(accs.mean()))
    print('Standard Deviation: {:.3f}'.format(accs.std()))

    print("\nTesting")
    logits = log(val_embs)
    preds = torch.argmax(logits, dim=1)
    acc = torch.sum(preds == val_lbls).float() / val_lbls.shape[0]
    print("Accuracy: {:.2f}%".format(100 * acc))
Beispiel #3
0
def train_transductive(dataset, dataset_str, edge_index, gnn_type, model_name, K=None, random_init=False, drop_sigma=False):
    batch_size = 1 # Transductive setting
    hyperparameters = get_hyperparameters()
    nb_epochs = hyperparameters["nb_epochs"]
    patience = hyperparameters["patience"]
    lr = hyperparameters["lr"]
    if gnn_type == "SGConv":
        lr /= 3.
    hid_units = hyperparameters["hid_units"]
    nonlinearity = hyperparameters["nonlinearity"]

    nb_nodes = dataset.x.shape[0]
    ft_size = dataset.x.shape[1]
    nb_classes = torch.max(dataset.y).item()+1 # 0 based cnt
    features = dataset.x

    model = DGI(ft_size, hid_units, nonlinearity, update_rule=gnn_type, K=K, drop_sigma=drop_sigma)
    optimiser = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=0)

    if torch.cuda.is_available():
        features = features.cuda()
        edge_index = edge_index.cuda()
        model = model.cuda()


    b_xent = nn.BCEWithLogitsLoss()
    xent = nn.CrossEntropyLoss()
    cnt_wait = 0
    best = 1e9
    best_t = 0

    for epoch in range(nb_epochs):
        if random_init:
            break
        model.train()
        optimiser.zero_grad()

        idx = np.random.permutation(nb_nodes)
        shuf_fts = features[idx, :]

        lbl_1 = torch.ones(nb_nodes)
        lbl_2 = torch.zeros(nb_nodes)
        lbl = torch.cat((lbl_1, lbl_2), 0)

        if torch.cuda.is_available():
            shuf_fts = shuf_fts.cuda()
            lbl = lbl.cuda()
        
        logits = model(features, shuf_fts, edge_index)

        loss = b_xent(logits, lbl)

        print('Loss:', loss)

        if loss < best:
            best = loss
            best_t = epoch
            cnt_wait = 0
            torch.save(model.state_dict(), './trained_models/'+model_name)
        else:
            cnt_wait += 1

        if cnt_wait == patience:
            print('Early stopping!')
            break

        loss.backward()
        optimiser.step()
    return best_t
        log.train()
        opt.zero_grad()

        logits = log(train_embs)
        loss = xent(logits, train_lbls)

        loss.backward()
        opt.step()

    logits = log(test_embs)
    preds = torch.argmax(logits, dim=1)
    acc = torch.sum(preds == test_lbls).float() / test_lbls.shape[0]
    return acc.detach().cpu().numpy()

for epoch in range(nb_epochs):
    encoder.train()
    optimiser.zero_grad()

    if make_adv:
        # step_size = step_size_init * math.pow(drop, math.floor((1 + epoch) / epochs_drop))
        step_size = step_size_init
        step_size_x = stepsize_x
        adv = atm(sp_adj, sp_A, None, n_flips, b_xent=b_xent, step_size=step_size,
                  eps_x=args.epsilon, step_size_x=step_size_x,
                  iterations=attack_iters, should_normalize=True, random_restarts=False, make_adv=True)
        if attack_mode == 'A':
            sp_adj = adv
        elif attack_mode == 'X':
            features = adv
        elif attack_mode == 'both':
            sp_adj = adv[0]
Beispiel #5
0
def process_inductive(dataset, gnn_type="GCNConv", K=None, random_init=False, runs=10):

    hyperparameters = get_hyperparameters()
    nb_epochs = hyperparameters["nb_epochs"]
    patience = hyperparameters["patience"]
    lr = hyperparameters["lr"]
    l2_coef = hyperparameters["l2_coef"]
    drop_prob = hyperparameters["drop_prob"]
    hid_units = hyperparameters["hid_units"]
    nonlinearity = hyperparameters["nonlinearity"]
    batch_size = hyperparameters["batch_size"]

    norm_features = torch_geometric.transforms.NormalizeFeatures()
    dataset_train = PPI(
        "./geometric_datasets/"+dataset,
        split="train",
        transform=norm_features,
    )
    print(dataset_train)
    dataset_val = PPI(
        "./geometric_datasets/"+dataset,
        split="val",
        transform=norm_features,
    )
    print(dataset_val)
    dataset_test = PPI(
        "./geometric_datasets/"+dataset,
        split="test",
        transform=norm_features,
    )
    data = []
    for d in dataset_train:
        data.append(d)
    for d in dataset_val:
        data.append(d)

    ft_size = dataset_train[0].x.shape[1]
    nb_classes = dataset_train[0].y.shape[1] # multilabel
    b_xent = nn.BCEWithLogitsLoss()

    loader_train = DataLoader(
        data,
        batch_size=hyperparameters["batch_size"],
        shuffle=True,
    )
    loader_test = DataLoader(
        dataset_test,
        batch_size=hyperparameters["batch_size"],
        shuffle=False
    )

    all_accs = []
    for _ in range(runs):
        model = DGI(ft_size, hid_units, nonlinearity, update_rule=gnn_type, batch_size=1, K=K)
        model_name = get_model_name(dataset, gnn_type, K, random_init=random_init)
        print(model)
        optimiser = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=l2_coef)

        if torch.cuda.is_available():
            print('Using CUDA')
            model = model.cuda()
        model.train()

        torch.cuda.empty_cache()
        for epoch in range(20):
            if random_init:
                break
            total_loss = 0
            batch_id = 0
            model.train()
            loaded = list(loader_train)
            for batch in loaded:
                optimiser.zero_grad()
                if torch.cuda.is_available:
                    batch = batch.to('cuda')
                nb_nodes = batch.x.shape[0]
                features = batch.x
                labels = batch.y
                edge_index = batch.edge_index

                idx = np.random.randint(0, len(data))
                while idx == batch_id:
                    idx = np.random.randint(0, len(data))
                shuf_fts = torch.nn.functional.dropout(loaded[idx].x, drop_prob)
                edge_index2 = loaded[idx].edge_index

                lbl_1 = torch.ones(nb_nodes)
                lbl_2 = torch.zeros(shuf_fts.shape[0])
                lbl = torch.cat((lbl_1, lbl_2), 0)

                if torch.cuda.is_available():
                    shuf_fts = shuf_fts.cuda()
                    if edge_index2 is not None:
                        edge_index2 = edge_index2.cuda()
                    lbl = lbl.cuda()
                
                logits = model(features, shuf_fts, edge_index, batch=batch.batch, edge_index_alt=edge_index2)

                loss = b_xent(logits, lbl)
                loss.backward()
                optimiser.step()
                batch_id += 1
                total_loss += loss.item()


            print(epoch, 'Train Loss:', total_loss/(len(dataset_train)))

        torch.save(model.state_dict(), './trained_models/'+model_name)
        torch.cuda.empty_cache()

        print('Loading last epoch')
        if not random_init:
            model.load_state_dict(torch.load('./trained_models/'+model_name))
        model.eval()

        b_xent_reg = nn.BCEWithLogitsLoss(pos_weight=torch.tensor(2.25))
        train_embs, whole_train_data = preprocess_embeddings(model, dataset_train)
        val_embs, whole_val_data = preprocess_embeddings(model, dataset_val)
        test_embs, whole_test_data = preprocess_embeddings(model, dataset_test)

        for _ in range(50):
            log = LogReg(hid_units, nb_classes)
            opt = torch.optim.Adam(log.parameters(), lr=0.01, weight_decay=0.0)
            log.cuda()

            pat_steps = 0
            best = 1e9
            log.train()
            for _ in range(250):
                opt.zero_grad()

                logits = log(train_embs)
                loss = b_xent_reg(logits, whole_train_data.y)
                
                loss.backward()
                opt.step()

                log.eval()
                val_logits = log(val_embs) 
                loss = b_xent_reg(val_logits, whole_val_data.y)
                if loss.item() < best:
                    best = loss.item()
                    pat_steps = 0
                if pat_steps >= 5:
                    break

                pat_steps += 1


            log.eval()
            logits = log(test_embs)
            preds = torch.sigmoid(logits) > 0.5
            f1 = sklearn.metrics.f1_score(whole_test_data.y.cpu(), preds.long().cpu(), average='micro')
            all_accs.append(float(f1))
            print()
            print('Micro-averaged f1:', f1)

    all_accs = torch.tensor(all_accs)

    with open("./results/"+model_name[:-4]+"_results.txt", "w") as f:
        f.writelines([str(all_accs.mean().item())+'\n', str(all_accs.std().item())])
    print(all_accs.mean())
    print(all_accs.std())