Beispiel #1
0
def _load_model(model_type):
    emb_size = 200
    hidden_size = 1500
    seq_len = 35  # 70
    batch_size = 20
    vocab_size = 10000
    num_layers = 2
    dp_keep_prob = 0.35

    # Load model (Change to RNN if you want RNN to predict)
    if model_type == 'RNN':
        model = RNN(emb_size, hidden_size, seq_len, batch_size, vocab_size,
                    num_layers, dp_keep_prob)
        PATH = os.path.join("RNN_ADAM_0", "best_params.pt")
    else:
        model = GRU(emb_size, hidden_size, seq_len, batch_size, vocab_size,
                    num_layers, dp_keep_prob)
        PATH = os.path.join("GRU_SGD_LR_SCHEDULE_0", "best_params.pt")

    if torch.cuda.is_available():
        model.load_state_dict(torch.load(PATH)).cuda()
        model.eval()
    else:
        model.load_state_dict(torch.load(PATH, map_location='cpu'))
        model.eval()
    return model
Beispiel #2
0
class Tester:
    """
    测试
    """
    def __init__(self, _hparams):
        self.test_loader = get_test_loader(_hparams)
        self.encoder = CNN().to(DEVICE)
        self.decoder = RNN(fea_dim=_hparams.fea_dim,
                           embed_dim=_hparams.embed_dim,
                           hid_dim=_hparams.hid_dim,
                           max_sen_len=_hparams.max_sen_len,
                           vocab_pkl=_hparams.vocab_pkl).to(DEVICE)
        self.test_cap = _hparams.test_cap

    def testing(self, save_path, test_path):
        """
        测试

        :param save_path: 模型的保存地址
        :param test_path: 保存测试过程生成句子的路径
        :return:
        """
        print('*' * 20, 'test', '*' * 20)
        self.load_models(save_path)
        self.set_eval()

        sen_json = []
        with torch.no_grad():
            for val_step, (img, img_id) in tqdm(enumerate(self.test_loader)):
                img = img.to(DEVICE)
                features = self.encoder.forward(img)
                sens, _ = self.decoder.sample(features)
                sen_json.append({'image_id': int(img_id), 'caption': sens[0]})

        with open(test_path, 'w') as f:
            json.dump(sen_json, f)

        result = coco_eval(self.test_cap, test_path)
        for metric, score in result:
            print(metric, score)

    def load_models(self, save_path):
        ckpt = torch.load(save_path,
                          map_location={'cuda:2': 'cuda:0'
                                        })  # 映射是因为解决保存模型的卡与加载模型的卡不一致的问题
        encoder_state_dict = ckpt['encoder_state_dict']
        self.encoder.load_state_dict(encoder_state_dict)
        decoder_state_dict = ckpt['decoder_state_dict']
        self.decoder.load_state_dict(decoder_state_dict)

    def set_eval(self):
        self.encoder.eval()
        self.decoder.eval()
def _load_model(emb_size, hidden_size, seq_len, batch_size, vocab_size,
                num_layers, dp_keep_prob, PATH, model_type):
    # Load model (Change to RNN if you want RNN to predict)
    if model_type == 'RNN':
        model = RNN(emb_size, hidden_size, seq_len, batch_size, vocab_size,
                    num_layers, dp_keep_prob)
    else:
        model = GRU(emb_size, hidden_size, seq_len, batch_size, vocab_size,
                    num_layers, dp_keep_prob)

    if torch.cuda.is_available():
        model.load_state_dict(torch.load(PATH)).cuda()
        model.eval()
    else:
        model.load_state_dict(torch.load(PATH, map_location='cpu'))
        model.eval()
    return model
Beispiel #4
0
def export_RNN_regressor(checkpoint_path):
    """
    :param checkpoint_path: relative path to a PyTorch .pth checkpoint
    :return: None, dumps a prediction text file in the model's training folder
    """
    checkpoint = torch.load(checkpoint_path)
    model = RNN(checkpoint['net_config'])
    model.load_state_dict(checkpoint['model'])
    model = model.eval().cuda()

    test_dataset = TweetDataset(dataset_type='test')
    test_loader = DataLoader(test_dataset,
                             batch_size=TRAIN_CONFIG['batch_size'],
                             num_workers=TRAIN_CONFIG['workers'],
                             collate_fn=collate_function,
                             shuffle=False,
                             pin_memory=True)

    with open(DATASET_CONFIG['test_csv_relative_path'], newline='') as csvfile:
        test_data = list(csv.reader(csvfile))[1:]

    ids = [datum[0] for datum in test_data]
    n = len(test_loader)

    with open(
            "checkpoints/{}/predictions.txt".format(
                checkpoint['train_config']['experiment_name']), 'w') as f:
        writer = csv.writer(f)
        writer.writerow(["TweetID", "NoRetweets"])
        current_idx = 0
        for batch_index, batch in enumerate(test_loader):
            printProgressBar(batch_index, n)
            batch_size = batch['numeric'].shape[0]

            numeric = batch['numeric'].cuda()
            text = batch['embedding'].cuda()
            prediction = torch.exp(model(
                text, numeric)) - 1 if EXPORT_CONFIG['log'] else model(
                    text, numeric)

            if EXPORT_CONFIG['threshold']:
                prediction[
                    prediction >
                    EXPORT_CONFIG['threshold']] = EXPORT_CONFIG['threshold']

            for idx_in_batch in range(batch_size):
                writer.writerow([
                    str(ids[current_idx + idx_in_batch]),
                    str(int(prediction[idx_in_batch].item()))
                ])

            current_idx += batch_size

    print("Exportation done! :)")
    model.train()
    prediction = model(X_train_dep_std)
    loss = loss_func(prediction, y_train_dep_std)
    optimizer.zero_grad()  # clear gradients for this training step
    loss.backward()        # back propagation, compute gradients
    optimizer.step()
    if iter % 100 == 0:
        print("iteration: %s, loss: %s" % (iter, loss.item()))

# Save model
save_filename = 'checkpoints/LSTM_DOUBLE_FC.pth'
torch.save(model, save_filename)
print('Saved as %s' % save_filename)

# Start evaluating model
model.eval()

y_pred_dep_ = model(X_test_dep_std).detach().numpy()
y_pred_dep = ss_y_dep.inverse_transform(y_pred_dep_[0, 144:])

print('The value of R-squared of water table depth is ', r2_score(Outputs[144:], y_pred_dep))
print('The value of Root mean squared error of water table depth is ', rmse(Outputs[144:], y_pred_dep))
print('The value of mean squared error of water table depth is ', mean_squared_error(Outputs[144:], y_pred_dep))


f, ax1 = plt.subplots(1, 1, sharex=True, figsize=(6, 4))

ax1.plot(Outputs[144:], color="blue", linestyle="-", linewidth=1.5, label="Measurements")
ax1.plot(y_pred_dep, color="green", linestyle="--", linewidth=1.5, label="Proposed model")

plt.legend(loc='upper right')
Beispiel #6
0
                bidirectional=args.bidirectional,
                tie_weights=args.tie_weights,
                nonlinearity=args.nonlinearity)
else:
    # no embedding layer (one-hot encoding)
    model = OneHotRNN(vocabulary=vocab,
                      rnn_type=args.rnn_type,
                      hidden_size=args.hidden_size,
                      n_layers=args.n_layers,
                      dropout=args.dropout,
                      bidirectional=args.bidirectional,
                      nonlinearity=args.nonlinearity)

# load the best model
model.load_state_dict(torch.load(args.model_file))
model.eval()  ## enable evaluation modes

# set up output filename
if args.sample_idx is not None:
    output_filename = 'sampled-SMILES-{}.smi'.format(args.sample_idx)
else:
    output_filename = 'sampled-SMILES.smi'

output_file = os.path.join(args.output_dir, output_filename)

# sample a set of SMILES from the final, trained model
sampled_count = 0
batch_size = 512
while sampled_count < args.mols_per_file:
    sampled_smiles, NLLs = model.sample(batch_size,
                                        return_smiles=True,
Beispiel #7
0
        if DEBUG:
            break
    trainloss /= batch_idx

    if epoch % checkpoint == 0:
        print('Saving model!')
        save_model(MODEL_NAME, model_dir, epoch, batch_step_count, time_used_global, optimizer, encoder, decoder)

    print('[%d] epoch starts validating...'%epoch)
    resulting_captions = []
    valloss = 0.0
    counts = 0
    with torch.no_grad():
        encoder.eval()
        decoder.eval()
        for images, captions_calc_bleu, captions_calc_loss, lengths, image_ids in valloader:
            images = images.cuda()
            image_embeddings = encoder(images)
            generated_captions_calc_bleu, probs = decoder.beam_search_generator_v2(image_embeddings)

            for idx in range(images.size(0)):
                captions_calc_loss_one_image = captions_calc_loss[idx].cuda()
                captions_calc_bleu_one_image = captions_calc_bleu[idx]
                captions_lengths_one_image = lengths[idx].cuda() - 1

                # calc loss
                targets_one_image = rnn_utils.pack_padded_sequence(captions_calc_loss_one_image[:, 1:],
                                                                   captions_lengths_one_image, batch_first=True)[0]
                no_captions_per_image = captions_calc_loss_one_image.size(0)
                generated_captions_calc_loss = decoder(image_embeddings[[idx]*no_captions_per_image],
class TextClassifier:
    def __init__(self, batch_size, iterations, initial_lr, hidden_size,
                 dropout, kernel_sz, num_layers):

        self.use_cuda = torch.cuda.is_available()
        self.device = torch.device('cuda:0' if self.use_cuda else 'cpu')

        self.data = DataReader()
        train_iter, val_iter, test_iter = self.data.init_dataset(
            batch_size, ('cuda:0' if self.use_cuda else 'cpu'))
        self.train_batch_loader = BatchGenerator(train_iter, 'text', 'label')
        self.val_batch_loader = BatchGenerator(val_iter, 'text', 'label')
        self.test_batch_loader = BatchGenerator(test_iter, 'text', 'label')

        # Store hyperparameters
        self.batch_size = batch_size
        self.iterations = iterations
        self.initial_lr = initial_lr

        # Create Model
        emb_size, emb_dim = self.data.TEXT.vocab.vectors.size()
        #         padding = (math.floor(kernel_sz / 2), 0)

        #         self.model = CNN(emb_size=emb_size, emb_dimension=emb_dim,
        #                              output_size=len(self.data.LABEL.vocab),
        #                              dropout=dropout, kernel_sz=kernel_sz, stride=1, padding=padding,
        #                              out_filters=hidden_size, pretrained_emb=self.data.TEXT.vocab.vectors)

        self.model = RNN(emb_size=emb_size,
                         emb_dimension=emb_dim,
                         pretrained_emb=self.data.TEXT.vocab.vectors,
                         output_size=len(self.data.LABEL.vocab),
                         num_layers=num_layers,
                         hidden_size=hidden_size,
                         dropout=dropout)

        if self.use_cuda:
            self.model.cuda()

    def train(self, min_stride=3):

        train_loss_hist = []
        val_loss_hist = []
        train_acc_hist = []
        val_acc_hist = []
        test_acc_hist = []

        best_score = 0.0

        loss = 0.0

        for itr in range(self.iterations):
            print("\nIteration: " + str(itr + 1))
            optimizer = optim.SGD(self.model.parameters(), lr=self.initial_lr)
            self.model.train()
            total_loss = 0.0
            total_acc = 0.0
            steps = 0

            data_iter = iter(self.train_batch_loader)

            for i in range(len(self.train_batch_loader)):

                ((x_batch, x_len_batch), y_batch) = next(data_iter)

                #                 if torch.min(x_len_batch) > min_stride:
                optimizer.zero_grad()

                loss, logits = self.model.forward(x_batch, y_batch)

                acc = torch.sum(torch.argmax(logits, dim=1) == y_batch)

                total_loss += loss.item()
                total_acc += acc.item()
                steps += 1

                loss.backward()

                optimizer.step()

            train_loss_hist.append(total_loss / steps)
            train_acc_hist.append(total_acc / len(self.data.train_data))

            val_loss, val_acc = self.eval_model(self.val_batch_loader,
                                                len(self.data.val_data))

            val_loss_hist.append(val_loss)
            val_acc_hist.append(val_acc)

            if val_acc > best_score:
                best_score = val_acc
                test_loss, test_acc = self.eval_model(self.test_batch_loader,
                                                      len(self.data.test_data))

            print("Train: {Loss: " + str(total_loss / steps) + ", Acc: " +
                  str(total_acc / len(self.data.train_data)) + " }")
            print("Val: {Loss: " + str(val_loss) + ", Acc: " + str(val_acc) +
                  " }")

        test_acc_hist.append(test_acc)

        return train_loss_hist, train_acc_hist, val_loss_hist, val_acc_hist, test_acc_hist

    def eval_model(self, batch_loader, N, min_stride=3):
        self.model.eval()

        total_loss = 0.0
        total_acc = 0.0
        steps = 0

        batch_iterator = iter(batch_loader)

        with torch.no_grad():
            for i in range(len(batch_loader)):

                ((x_batch, x_len_batch), y_batch) = next(batch_iterator)

                #                 if torch.min(x_len_batch) > min_stride:
                loss, logits = self.model(x_batch, y_batch)

                acc = torch.sum(torch.argmax(logits, dim=1) == y_batch)

                total_loss += loss.item()
                total_acc += acc.item()

        return (total_loss / N), (total_acc / N)
Beispiel #9
0
          num_layers=argsdict["RNN_num_layers"],
          dp_keep_prob=1)

gru = GRU(emb_size=argsdict["GRU_emb_size"],
          hidden_size=argsdict["GRU_hidden_size"],
          seq_len=argsdict["seq_len"],
          batch_size=argsdict["batch_size"],
          vocab_size=vocab_size,
          num_layers=argsdict["GRU_num_layers"],
          dp_keep_prob=1)

# Load the model weight
rnn.load_state_dict(torch.load(args.RNN_path))
gru.load_state_dict(torch.load(args.GRU_path))

rnn.eval()
gru.eval()

# Initialize the hidden state
hidden = [rnn.init_hidden(), gru.init_hidden()]

# Set the random seed manually for reproducibility.
torch.manual_seed(args.seed)

# Generate the word seed using random words
# in the first 100 most common words.
input = torch.randint(0, 100, (args.batch_size, 1)).squeeze()

for name_model, model, init_hidden in zip(["RNN", "GRU"], [rnn, gru], hidden):
    print("------------------------------------")
    print(name_model)
Beispiel #10
0
class Trainer:
    """
    训练
    """
    def __init__(self, _hparams):
        utils.set_seed(_hparams.fixed_seed)

        self.train_loader = get_train_loader(_hparams)
        self.val_loader = get_val_loader(_hparams)
        self.encoder = CNN().to(DEVICE)
        self.decoder = RNN(fea_dim=_hparams.fea_dim,
                           embed_dim=_hparams.embed_dim,
                           hid_dim=_hparams.hid_dim,
                           max_sen_len=_hparams.max_sen_len,
                           vocab_pkl=_hparams.vocab_pkl).to(DEVICE)
        self.loss_fn = nn.CrossEntropyLoss()
        self.optimizer = torch.optim.Adam(self.get_params(), lr=_hparams.lr)
        self.writer = SummaryWriter()

        self.max_sen_len = _hparams.max_sen_len
        self.val_cap = _hparams.val_cap
        self.ft_encoder_lr = _hparams.ft_encoder_lr
        self.ft_decoder_lr = _hparams.ft_decoder_lr
        self.best_CIDEr = 0

    def fine_tune_encoder(self, fine_tune_epochs, val_interval, save_path,
                          val_path):
        print('*' * 20, 'fine tune encoder for', fine_tune_epochs, 'epochs',
              '*' * 20)
        self.encoder.fine_tune()
        self.optimizer = torch.optim.Adam([
            {
                'params': self.encoder.parameters(),
                'lr': self.ft_encoder_lr
            },
            {
                'params': self.decoder.parameters(),
                'lr': self.ft_decoder_lr
            },
        ])
        self.training(fine_tune_epochs, val_interval, save_path, val_path)
        self.encoder.froze()
        print('*' * 20, 'fine tune encoder complete', '*' * 20)

    def get_params(self):
        """
        模型需要优化的全部参数,此处encoder暂时设计不用训练,故不加参数

        :return:
        """
        return list(self.decoder.parameters())

    def training(self, max_epochs, val_interval, save_path, val_path):
        """
        训练

        :param val_path: 保存验证过程生成句子的路径
        :param save_path: 保存模型的地址
        :param val_interval: 验证的间隔
        :param max_epochs: 最大训练的轮次
        :return:
        """
        print('*' * 20, 'train', '*' * 20)
        for epoch in range(max_epochs):
            self.set_train()

            epoch_loss = 0
            epoch_steps = len(self.train_loader)
            for step, (img, cap,
                       cap_len) in tqdm(enumerate(self.train_loader)):
                # batch_size * 3 * 224 * 224
                img = img.to(DEVICE)
                cap = cap.to(DEVICE)

                self.optimizer.zero_grad()

                features = self.encoder.forward(img)
                outputs = self.decoder.forward(features, cap)

                outputs = pack_padded_sequence(outputs,
                                               cap_len - 1,
                                               batch_first=True)[0]
                targets = pack_padded_sequence(cap[:, 1:],
                                               cap_len - 1,
                                               batch_first=True)[0]
                train_loss = self.loss_fn(outputs, targets)
                epoch_loss += train_loss.item()
                train_loss.backward()
                self.optimizer.step()

            epoch_loss /= epoch_steps
            self.writer.add_scalar('epoch_loss', epoch_loss, epoch)
            print('epoch_loss: {}, epoch: {}'.format(epoch_loss, epoch))
            if (epoch + 1) % val_interval == 0:
                CIDEr = self.validating(epoch, val_path)
                if self.best_CIDEr <= CIDEr:
                    self.best_CIDEr = CIDEr
                    self.save_model(save_path, epoch)

    def save_model(self, save_path, train_epoch):
        """
        保存最好的模型

        :param save_path: 保存模型文件的地址
        :param train_epoch: 当前训练的轮次
        :return:
        """
        model_state_dict = {
            'encoder_state_dict': self.encoder.state_dict(),
            'decoder_state_dict': self.decoder.state_dict(),
            'tran_epoch': train_epoch,
        }
        print('*' * 20, 'save model to: ', save_path, '*' * 20)
        torch.save(model_state_dict, save_path)

    def validating(self, train_epoch, val_path):
        """
        验证

        :param val_path: 保存验证过程生成句子的路径
        :param train_epoch: 当前训练的epoch
        :return:
        """
        print('*' * 20, 'validate', '*' * 20)
        self.set_eval()
        sen_json = []
        with torch.no_grad():
            for val_step, (img, img_id) in tqdm(enumerate(self.val_loader)):
                img = img.to(DEVICE)
                features = self.encoder.forward(img)
                sens, _ = self.decoder.sample(features)
                sen_json.append({'image_id': int(img_id), 'caption': sens[0]})

        with open(val_path, 'w') as f:
            json.dump(sen_json, f)

        result = coco_eval(self.val_cap, val_path)
        scores = {}
        for metric, score in result:
            scores[metric] = score
            self.writer.add_scalar(metric, score, train_epoch)

        return scores['CIDEr']

    def set_train(self):
        self.encoder.train()
        self.decoder.train()

    def set_eval(self):
        self.encoder.eval()
        self.decoder.eval()
Beispiel #11
0

if __name__ == '__main__':
    # 1.data load
    print('data load start')
    train_texts, train_labels = read_imdb_split(train_data_path)
    train_data = IMDBDataset(train_texts, train_labels, word2idx)
    trainloader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, collate_fn=collate_imdb,
                                              shuffle=True)
    test_texts, test_labels = read_imdb_split(test_data_path)
    test_data = IMDBDataset(test_texts, test_labels, word2idx, attack_label=1)
    testloader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, collate_fn=collate_imdb,
                                             shuffle=False)
    print('data load end')

    random.seed(11)
    np.random.seed(11)
    torch.manual_seed(11)

    # 2.train or test
    criterion = nn.CrossEntropyLoss()
    if mode == 1:
        model = RNN(vocab_size=vocab_size, embedding_dim=300, hidden_dim=300, output_dim=2).to(device)
        optimizer = torch.optim.Adam(model.parameters(), lr=0.0004)
        train(model)
    else:
        baseline_model = RNN(vocab_size=vocab_size, embedding_dim=300, hidden_dim=300, output_dim=2).to(device)
        baseline_model.load_state_dict(torch.load(output_model_path))
        baseline_model.eval()  # 开启eval状态,不再随机dropout
        evaluate_model(baseline_model, testloader, criterion)