def __init__(self, env, gamma, tau, v_lr, q_lr, policy_lr, buffer_maxlen): self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.env = env self.action_range = [env.action_space.low, env.action_space.high] self.obs_dim = env.observation_space.shape[0] self.action_dim = env.action_space.shape[0] # hyperparameters self.gamma = gamma self.tau = tau # initialize networks self.value_net = ValueNetwork(self.obs_dim, 1).to(self.device) self.target_value_net = ValueNetwork(self.obs_dim, 1).to(self.device) self.q_net1 = SoftQNetwork(self.obs_dim, self.action_dim).to(self.device) self.q_net2 = SoftQNetwork(self.obs_dim, self.action_dim).to(self.device) self.policy_net = GaussianPolicy(self.obs_dim, self.action_dim).to(self.device) # copy params to target param for target_param, param in zip(self.target_value_net.parameters(), self.value_net.parameters()): target_param.data.copy_(param) # initialize optimizers self.value_optimizer = optim.Adam(self.value_net.parameters(), lr=v_lr) self.q1_optimizer = optim.Adam(self.q_net1.parameters(), lr=q_lr) self.q2_optimizer = optim.Adam(self.q_net2.parameters(), lr=q_lr) self.policy_optimizer = optim.Adam(self.policy_net.parameters(), lr=policy_lr) self.replay_buffer = Buffer(buffer_maxlen)
def __init__(self, env, gamma, tau, alpha, q_lr, policy_lr, a_lr, buffer_maxlen): self.device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") self.env = env self.action_range = [env.action_space.low, env.action_space.high] self.obs_dim = env.observation_space.shape[0] self.action_dim = env.action_space.shape[0] # hyperparameters self.gamma = gamma self.tau = tau self.update_step = 0 self.delay_step = 2 # initialize networks self.q_net1 = SoftQNetwork(self.obs_dim, self.action_dim).to(self.device) self.q_net2 = SoftQNetwork(self.obs_dim, self.action_dim).to(self.device) self.target_q_net1 = SoftQNetwork(self.obs_dim, self.action_dim).to(self.device) self.target_q_net2 = SoftQNetwork(self.obs_dim, self.action_dim).to(self.device) self.policy_net = PolicyNetwork(self.obs_dim, self.action_dim).to(self.device) # copy params to target param for target_param, param in zip(self.target_q_net1.parameters(), self.q_net1.parameters()): target_param.data.copy_(param) for target_param, param in zip(self.target_q_net2.parameters(), self.q_net2.parameters()): target_param.data.copy_(param) # initialize optimizers self.q1_optimizer = optim.Adam(self.q_net1.parameters(), lr=q_lr) self.q2_optimizer = optim.Adam(self.q_net2.parameters(), lr=q_lr) self.policy_optimizer = optim.Adam(self.policy_net.parameters(), lr=policy_lr) # entropy temperature self.alpha = alpha self.target_entropy = -torch.prod( torch.Tensor(self.env.action_space.shape).to(self.device)).item() self.log_alpha = torch.zeros(1, requires_grad=True, device=self.device) self.alpha_optim = optim.Adam([self.log_alpha], lr=a_lr) self.replay_buffer = BasicBuffer(buffer_maxlen)
class SACAgent: def __init__(self, env, gamma, tau, v_lr, q_lr, policy_lr, buffer_maxlen): self.device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") self.env = env self.action_range = [env.action_space.low, env.action_space.high] self.obs_dim = env.observation_space.shape[0] self.action_dim = env.action_space.shape[0] # hyperparameters self.gamma = gamma self.tau = tau self.update_step = 0 self.delay_step = 2 # initialize networks self.value_net = ValueNetwork(self.obs_dim, 1).to(self.device) self.target_value_net = ValueNetwork(self.obs_dim, 1).to(self.device) self.q_net1 = SoftQNetwork(self.obs_dim, self.action_dim).to(self.device) self.q_net2 = SoftQNetwork(self.obs_dim, self.action_dim).to(self.device) self.policy_net = PolicyNetwork(self.obs_dim, self.action_dim).to(self.device) # copy params to target param for target_param, param in zip(self.target_value_net.parameters(), self.value_net.parameters()): target_param.data.copy_(param) # initialize optimizers self.value_optimizer = optim.Adam(self.value_net.parameters(), lr=v_lr) self.q1_optimizer = optim.Adam(self.q_net1.parameters(), lr=q_lr) self.q2_optimizer = optim.Adam(self.q_net2.parameters(), lr=q_lr) self.policy_optimizer = optim.Adam(self.policy_net.parameters(), lr=policy_lr) self.replay_buffer = BasicBuffer(buffer_maxlen) def get_action(self, state): state = torch.FloatTensor(state).unsqueeze(0).to(self.device) mean, log_std = self.policy_net.forward(state) std = log_std.exp() normal = Normal(mean, std) z = normal.sample() action = torch.tanh(z) action = action.cpu().detach().squeeze(0).numpy() return self.rescale_action(action) def rescale_action(self, action): return action * (self.action_range[1] - self.action_range[0]) / 2.0 +\ (self.action_range[1] + self.action_range[0]) / 2.0 def update(self, batch_size): states, actions, rewards, next_states, dones = self.replay_buffer.sample( batch_size) states = torch.FloatTensor(states).to(self.device) actions = torch.FloatTensor(actions).to(self.device) rewards = torch.FloatTensor(rewards).to(self.device) next_states = torch.FloatTensor(next_states).to(self.device) dones = torch.FloatTensor(dones).to(self.device) dones = dones.view(dones.size(0), -1) next_actions, next_log_pi = self.policy_net.sample(next_states) next_q1 = self.q_net1(next_states, next_actions) next_q2 = self.q_net2(next_states, next_actions) next_v = self.target_value_net(next_states) # value Loss next_v_target = torch.min(next_q1, next_q2) - next_log_pi curr_v = self.value_net.forward(states) v_loss = F.mse_loss(curr_v, next_v_target.detach()) # q loss curr_q1 = self.q_net1.forward(states, actions) curr_q2 = self.q_net2.forward(states, actions) expected_q = rewards + (1 - dones) * self.gamma * next_v q1_loss = F.mse_loss(curr_q1, expected_q.detach()) q2_loss = F.mse_loss(curr_q2, expected_q.detach()) # update value network and q networks self.value_optimizer.zero_grad() v_loss.backward() self.value_optimizer.step() self.q1_optimizer.zero_grad() q1_loss.backward() self.q1_optimizer.step() self.q2_optimizer.zero_grad() q2_loss.backward() self.q2_optimizer.step() #delayed update for policy net and target value nets if self.update_step % self.delay_step == 0: new_actions, log_pi = self.policy_net.sample(states) min_q = torch.min(self.q_net1.forward(states, new_actions), self.q_net2.forward(states, new_actions)) policy_loss = (log_pi - min_q).mean() self.policy_optimizer.zero_grad() policy_loss.backward() self.policy_optimizer.step() # target networks for target_param, param in zip(self.target_value_net.parameters(), self.value_net.parameters()): target_param.data.copy_(self.tau * param + (1 - self.tau) * target_param) self.update_step += 1
def train_sac(args): ''' Parse arguments and construct objects for training sac model ''' device = torch.device( 'cuda') if torch.cuda.is_available() else torch.device('cpu') token_tables = op.build_token_tables() # initialize tensorboard for logging output from os import path train_logger = None if args.log_dir is not None: train_logger = tb.SummaryWriter(path.join(args.log_dir, 'train'), flush_secs=1) # Load Models policy = RobustFill(string_size=len(op.CHARACTER), string_embedding_size=args.embedding_size, decoder_inp_size=128, hidden_size=args.hidden_size, program_size=len(token_tables.op_token_table), device=device) q_1 = SoftQNetwork(128, len(token_tables.op_token_table), args.hidden_size) q_2 = SoftQNetwork(128, len(token_tables.op_token_table), args.hidden_size) tgt_q_1 = SoftQNetwork(128, len(token_tables.op_token_table), args.hidden_size).eval() tgt_q_2 = SoftQNetwork(128, len(token_tables.op_token_table), args.hidden_size).eval() if args.continue_training_policy: policy.load_state_dict( torch.load(path.join(path.dirname(path.abspath(__file__)), args.checkpoint_filename), map_location=device)) elif args.continue_training: policy.load_state_dict( torch.load(path.join(path.dirname(path.abspath(__file__)), args.checkpoint_filename), map_location=device)) q_1.load_state_dict( torch.load(path.join(path.dirname(path.abspath(__file__)), args.q1_checkpoint_filename), map_location=device)) q_2.load_state_dict( torch.load(path.join(path.dirname(path.abspath(__file__)), args.q2_checkpoint_filename), map_location=device)) for target_param, param in zip(tgt_q_1.parameters(), q_1.parameters()): target_param.data.copy_(param.data) for target_param, param in zip(tgt_q_2.parameters(), q_2.parameters()): target_param.data.copy_(param.data) for param in tgt_q_1.parameters(): param.requires_grad = False for param in tgt_q_2.parameters(): param.requires_grad = False policy = policy.to(device) policy.set_device(device) q_1 = q_1.to(device) q_2 = q_2.to(device) tgt_q_1 = tgt_q_1.to(device) tgt_q_2 = tgt_q_2.to(device) # Initialize optimizers if (args.optimizer == 'sgd'): policy_opt = optim.SGD(policy.parameters(), lr=args.lr) q_1_opt = optim.SGD(q_1.parameters(), lr=args.lr) q_2_opt = optim.SGD(q_2.parameters(), lr=args.lr) entropy_opt = optim.SGD([policy.log_alpha], lr=args.lr) else: policy_opt = optim.Adam(policy.parameters(), lr=args.lr) q_1_opt = optim.Adam(q_1.parameters(), lr=args.lr) q_2_opt = optim.Adam(q_2.parameters(), lr=args.lr) entropy_opt = optim.Adam([policy.log_alpha], lr=args.lr) # Other necessary objects env = RobustFillEnv() replay_buffer_size = 1_000_000 replay_buffer = Replay_Buffer(replay_buffer_size, args.batch_size) her = HER() train_sac_(args, policy, q_1, q_2, tgt_q_1, tgt_q_2, policy_opt, q_1_opt, q_2_opt, entropy_opt, replay_buffer, her, env, train_logger, args.checkpoint_filename, args.checkpoint_step_size, args.print_tensors)
def __init__(self, env: object, gamma: float, tau: float, buffer_maxlen: int, critic_lr: float, actor_lr: float, reward_scale: int): # Selecting the device to use, wheter CUDA (GPU) if available or CPU self.device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") # Creating the Gym environments for training and evaluation self.env = env # Get max and min values of the action of this environment self.action_range = [ self.env.action_space.low, self.env.action_space.high ] # Get dimension of of the state and the action self.obs_dim = self.env.observation_space.shape[0] self.action_dim = self.env.action_space.shape[0] # hyperparameters self.gamma = gamma self.tau = tau self.critic_lr = critic_lr self.actor_lr = actor_lr self.buffer_maxlen = buffer_maxlen self.reward_scale = reward_scale # Scaling and bias factor for the actions -> We need scaling of the actions because each environment has different min and max values of actions self.scale = (self.action_range[1] - self.action_range[0]) / 2.0 self.bias = (self.action_range[1] + self.action_range[0]) / 2.0 # initialize networks self.q_net1 = SoftQNetwork(self.obs_dim, self.action_dim).to(self.device) self.target_q_net1 = SoftQNetwork(self.obs_dim, self.action_dim).to(self.device) self.q_net2 = SoftQNetwork(self.obs_dim, self.action_dim).to(self.device) self.target_q_net2 = SoftQNetwork(self.obs_dim, self.action_dim).to(self.device) self.policy = PolicyNetwork(self.obs_dim, self.action_dim).to(self.device) # copy weight parameters to the target Q networks for target_param, param in zip(self.target_q_net1.parameters(), self.q_net1.parameters()): target_param.data.copy_(param) for target_param, param in zip(self.target_q_net2.parameters(), self.q_net2.parameters()): target_param.data.copy_(param) # initialize optimizers self.q1_optimizer = optim.Adam(self.q_net1.parameters(), lr=self.critic_lr) self.q2_optimizer = optim.Adam(self.q_net2.parameters(), lr=self.critic_lr) self.policy_optimizer = optim.Adam(self.policy.parameters(), lr=self.actor_lr) # Create a replay buffer self.replay_buffer = BasicBuffer(self.buffer_maxlen)
class SACAgent(): def __init__(self, env: object, gamma: float, tau: float, buffer_maxlen: int, critic_lr: float, actor_lr: float, reward_scale: int): # Selecting the device to use, wheter CUDA (GPU) if available or CPU self.device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") # Creating the Gym environments for training and evaluation self.env = env # Get max and min values of the action of this environment self.action_range = [ self.env.action_space.low, self.env.action_space.high ] # Get dimension of of the state and the action self.obs_dim = self.env.observation_space.shape[0] self.action_dim = self.env.action_space.shape[0] # hyperparameters self.gamma = gamma self.tau = tau self.critic_lr = critic_lr self.actor_lr = actor_lr self.buffer_maxlen = buffer_maxlen self.reward_scale = reward_scale # Scaling and bias factor for the actions -> We need scaling of the actions because each environment has different min and max values of actions self.scale = (self.action_range[1] - self.action_range[0]) / 2.0 self.bias = (self.action_range[1] + self.action_range[0]) / 2.0 # initialize networks self.q_net1 = SoftQNetwork(self.obs_dim, self.action_dim).to(self.device) self.target_q_net1 = SoftQNetwork(self.obs_dim, self.action_dim).to(self.device) self.q_net2 = SoftQNetwork(self.obs_dim, self.action_dim).to(self.device) self.target_q_net2 = SoftQNetwork(self.obs_dim, self.action_dim).to(self.device) self.policy = PolicyNetwork(self.obs_dim, self.action_dim).to(self.device) # copy weight parameters to the target Q networks for target_param, param in zip(self.target_q_net1.parameters(), self.q_net1.parameters()): target_param.data.copy_(param) for target_param, param in zip(self.target_q_net2.parameters(), self.q_net2.parameters()): target_param.data.copy_(param) # initialize optimizers self.q1_optimizer = optim.Adam(self.q_net1.parameters(), lr=self.critic_lr) self.q2_optimizer = optim.Adam(self.q_net2.parameters(), lr=self.critic_lr) self.policy_optimizer = optim.Adam(self.policy.parameters(), lr=self.actor_lr) # Create a replay buffer self.replay_buffer = BasicBuffer(self.buffer_maxlen) def update(self, batch_size: int): # Sampling experiences from the replay buffer states, actions, rewards, next_states, dones = self.replay_buffer.sample( batch_size) # Convert numpy arrays of experience tuples into pytorch tensors states = torch.FloatTensor(states).to(self.device) actions = torch.FloatTensor(actions).to(self.device) rewards = self.reward_scale * torch.FloatTensor(rewards).to( self.device) # in SAC we do reward scaling for the sampled rewards next_states = torch.FloatTensor(next_states).to(self.device) dones = torch.FloatTensor(dones).to(self.device) dones = dones.view(dones.size(0), -1) # Critic update (computing the loss) # Please refer to equation (6) in the paper for details # Sample actions for the next states (s_t+1) using the current policy next_actions, next_log_pi, _, _ = self.policy.sample( next_states, self.scale) next_actions = self.rescale_action(next_actions) # Compute Q(s_t+1,a_t+1) by giving the states and actions to the Q network and choose the minimum from 2 target Q networks next_q1 = self.target_q_net1(next_states, next_actions) next_q2 = self.target_q_net2(next_states, next_actions) min_q = torch.min(next_q1, next_q2) # find minimum between next_q1 and next_q2 # Compute the next Q_target (Q(s_t,a_t)-alpha(next_log_pi)) next_q_target = (min_q - next_log_pi) # Compute the Q(s_t,a_t) using s_t and a_t from the replay buffer curr_q1 = self.q_net1.forward(states, actions) curr_q2 = self.q_net2.forward(states, actions) # Find expected Q, i.e., r(t) + gamma*next_q_target expected_q = rewards + (1 - dones) * self.gamma * next_q_target # Compute loss between Q network and expected Q q1_loss = F.mse_loss(curr_q1, expected_q.detach()) q2_loss = F.mse_loss(curr_q2, expected_q.detach()) # Backpropagate the losses and update Q network parameters self.q1_optimizer.zero_grad() q1_loss.backward() self.q1_optimizer.step() self.q2_optimizer.zero_grad() q2_loss.backward() self.q2_optimizer.step() # Policy update (computing the loss) # Sample new actions for the current states (s_t) using the current policy new_actions, log_pi, _, _ = self.policy.sample(states, self.scale) new_actions = self.rescale_action(new_actions) # Compute Q(s_t,a_t) and choose the minimum from 2 Q networks new_q1 = self.q_net1.forward(states, new_actions) new_q2 = self.q_net2.forward(states, new_actions) min_q = torch.min(new_q1, new_q2) # Compute the next policy loss, i.e., alpha*log_pi - Q(s_t,a_t) eq. (7) policy_loss = (log_pi - min_q).mean() # Backpropagate the losses and update policy network parameters self.policy_optimizer.zero_grad() policy_loss.backward() self.policy_optimizer.step() # Updating target networks with soft update using update rate tau for target_param, param in zip(self.target_q_net1.parameters(), self.q_net1.parameters()): target_param.data.copy_(self.tau * param + (1 - self.tau) * target_param) for target_param, param in zip(self.target_q_net2.parameters(), self.q_net2.parameters()): target_param.data.copy_(self.tau * param + (1 - self.tau) * target_param) def get_action( self, state: np.ndarray, stochastic: bool) -> Tuple[np.ndarray, torch.Tensor, torch.Tensor]: # state: the state input to the pi network # stochastic: boolean (True -> use noisy action, False -> use noiseless (deterministic action)) state = torch.FloatTensor(state).unsqueeze(0).to(self.device) # Get mean and sigma from the policy network mean, log_std = self.policy.forward(state) std = log_std.exp() # Stochastic mode is used for training, non-stochastic mode is used for evaluation if stochastic: normal = Normal(mean, std) z = normal.sample() action = torch.tanh(z) action = action.cpu().detach().squeeze(0).numpy() else: normal = Normal(mean, 0) z = normal.sample() action = torch.tanh(z) action = action.cpu().detach().squeeze(0).numpy() # return a rescaled action, and also the mean and standar deviation of the action # we use a rescaled action since the output of the policy network is [-1,1] and the mujoco environments could be ranging from [-n,n] where n is an arbitrary real value return self.rescale_action(action), mean, std def rescale_action(self, action: np.ndarray) -> np.ndarray: # we use a rescaled action since the output of the policy network is [-1,1] and the mujoco environments could be ranging from [-n,n] where n is an arbitrary real value # scale -> scalar multiplication # bias -> scalar offset return action * self.scale[0] + self.bias[0] def Actor_save(self, WORKSPACE: str): # save 각 node별 모델 저장 print("Save the torch model") savePath = WORKSPACE + "./policy_model5_Hop_.pth" torch.save(self.policy.state_dict(), savePath) def Actor_load(self, WORKSPACE: str): # save 각 node별 모델 로드 print("load the torch model") savePath = WORKSPACE + "./policy_model5_Hop_.pth" # Best self.policy = PolicyNetwork(self.obs_dim, self.action_dim).to(self.device) self.policy.load_state_dict(torch.load(savePath))
class SACAgent: def __init__(self, env, gamma, tau, alpha, q_lr, policy_lr, a_lr, buffer_maxlen): self.device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") self.env = env self.action_range = [0, 250] self.obs_dim = env.state_dim self.action_dim = env.action_dim # hyperparameters self.gamma = gamma self.tau = tau self.update_step = 0 self.delay_step = 2 # initialize networks self.q_net1 = SoftQNetwork(self.obs_dim, self.action_dim).to(self.device) self.q_net2 = SoftQNetwork(self.obs_dim, self.action_dim).to(self.device) self.target_q_net1 = SoftQNetwork(self.obs_dim, self.action_dim).to(self.device) self.target_q_net2 = SoftQNetwork(self.obs_dim, self.action_dim).to(self.device) self.policy_net = PolicyNetwork(self.obs_dim, self.action_dim).to(self.device) # copy params to target param for target_param, param in zip(self.target_q_net1.parameters(), self.q_net1.parameters()): target_param.data.copy_(param) for target_param, param in zip(self.target_q_net2.parameters(), self.q_net2.parameters()): target_param.data.copy_(param) # initialize optimizers self.q1_optimizer = optim.Adam(self.q_net1.parameters(), lr=q_lr) self.q2_optimizer = optim.Adam(self.q_net2.parameters(), lr=q_lr) self.policy_optimizer = optim.Adam(self.policy_net.parameters(), lr=policy_lr) # entropy temperature self.alpha = alpha self.target_entropy = -torch.prod( torch.Tensor([self.action_dim, 1]).to(self.device)).item() self.log_alpha = torch.zeros(1, requires_grad=True, device=self.device) self.alpha_optim = optim.Adam([self.log_alpha], lr=a_lr) self.replay_buffer = BasicBuffer(buffer_maxlen) def get_action(self, state): state = torch.FloatTensor(state).unsqueeze(0).to(self.device) mean, log_std = self.policy_net.forward(state) std = log_std.exp() normal = Normal(mean, std) z = normal.sample() action = torch.tanh(z) action = action.cpu().detach().squeeze(0).numpy() return self.rescale_action(action) def rescale_action(self, action): return action * (self.action_range[1] - self.action_range[0]) / 2.0 +\ (self.action_range[1] + self.action_range[0]) / 2.0 def update(self, batch_size): states, actions, rewards, next_states, dones = self.replay_buffer.sample( batch_size) states = torch.FloatTensor(states).to(self.device) actions = torch.FloatTensor(actions).to(self.device) rewards = torch.FloatTensor(rewards).to(self.device) next_states = torch.FloatTensor(next_states).to(self.device) dones = torch.FloatTensor(dones).to(self.device) dones = dones.view(dones.size(0), -1) next_actions, next_log_pi = self.policy_net.sample(next_states) next_q1 = self.target_q_net1(next_states, next_actions) next_q2 = self.target_q_net2(next_states, next_actions) next_q_target = torch.min(next_q1, next_q2) - self.alpha * next_log_pi expected_q = rewards + (1 - dones) * self.gamma * next_q_target # q loss curr_q1 = self.q_net1.forward(states, actions) curr_q2 = self.q_net2.forward(states, actions) q1_loss = F.mse_loss(curr_q1, expected_q.detach()) q2_loss = F.mse_loss(curr_q2, expected_q.detach()) # update q networks self.q1_optimizer.zero_grad() q1_loss.backward() self.q1_optimizer.step() self.q2_optimizer.zero_grad() q2_loss.backward() self.q2_optimizer.step() # delayed update for policy network and target q networks new_actions, log_pi = self.policy_net.sample(states) if self.update_step % self.delay_step == 0: min_q = torch.min(self.q_net1.forward(states, new_actions), self.q_net2.forward(states, new_actions)) policy_loss = (self.alpha * log_pi - min_q).mean() self.policy_optimizer.zero_grad() policy_loss.backward() self.policy_optimizer.step() # target networks for target_param, param in zip(self.target_q_net1.parameters(), self.q_net1.parameters()): target_param.data.copy_(self.tau * param + (1 - self.tau) * target_param) for target_param, param in zip(self.target_q_net2.parameters(), self.q_net2.parameters()): target_param.data.copy_(self.tau * param + (1 - self.tau) * target_param) # update temperature alpha_loss = (self.log_alpha * (-log_pi - self.target_entropy).detach()).mean() self.alpha_optim.zero_grad() alpha_loss.backward() self.alpha_optim.step() self.alpha = self.log_alpha.exp() self.update_step += 1
def __init__(self, env, gamma, tau, v_lr, q_lr, policy_lr, buffer_maxlen): self.device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") self.firsttime = 0 self.env = env self.action_range = [env.action_space.low, env.action_space.high] #self.obs_dim = env.observation_space.shape[0] self.action_dim = env.action_space.shape[0] #1 self.conv_channels = 4 self.kernel_size = (3, 3) self.img_size = (500, 500, 3) print("Diagnostics:") print(f"action_range: {self.action_range}") #print(f"obs_dim: {self.obs_dim}") print(f"action_dim: {self.action_dim}") # hyperparameters self.gamma = gamma self.tau = tau self.update_step = 0 self.delay_step = 2 # initialize networks self.feature_net = FeatureExtractor(self.img_size[2], self.conv_channels, self.kernel_size).to(self.device) print("Feature net init'd successfully") input_dim = self.feature_net.get_output_size(self.img_size) self.input_size = input_dim[0] * input_dim[1] * input_dim[2] print(f"input_size: {self.input_size}") self.value_net = ValueNetwork(self.input_size, 1).to(self.device) self.target_value_net = ValueNetwork(self.input_size, 1).to(self.device) self.q_net1 = SoftQNetwork(self.input_size, self.action_dim).to(self.device) self.q_net2 = SoftQNetwork(self.input_size, self.action_dim).to(self.device) self.policy_net = PolicyNetwork(self.input_size, self.action_dim).to(self.device) print("Finished initing all nets") # copy params to target param for target_param, param in zip(self.target_value_net.parameters(), self.value_net.parameters()): target_param.data.copy_(param) print("Finished copying targets") # initialize optimizers self.value_optimizer = optim.Adam(self.value_net.parameters(), lr=v_lr) self.q1_optimizer = optim.Adam(self.q_net1.parameters(), lr=q_lr) self.q2_optimizer = optim.Adam(self.q_net2.parameters(), lr=q_lr) self.policy_optimizer = optim.Adam(self.policy_net.parameters(), lr=policy_lr) print("Finished initing optimizers") self.replay_buffer = BasicBuffer(buffer_maxlen) print("End of init")
class SACAgent: def __init__(self, env, gamma, tau, v_lr, q_lr, policy_lr, buffer_maxlen): self.device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") self.firsttime = 0 self.env = env self.action_range = [env.action_space.low, env.action_space.high] #self.obs_dim = env.observation_space.shape[0] self.action_dim = env.action_space.shape[0] #1 self.conv_channels = 4 self.kernel_size = (3, 3) self.img_size = (500, 500, 3) print("Diagnostics:") print(f"action_range: {self.action_range}") #print(f"obs_dim: {self.obs_dim}") print(f"action_dim: {self.action_dim}") # hyperparameters self.gamma = gamma self.tau = tau self.update_step = 0 self.delay_step = 2 # initialize networks self.feature_net = FeatureExtractor(self.img_size[2], self.conv_channels, self.kernel_size).to(self.device) print("Feature net init'd successfully") input_dim = self.feature_net.get_output_size(self.img_size) self.input_size = input_dim[0] * input_dim[1] * input_dim[2] print(f"input_size: {self.input_size}") self.value_net = ValueNetwork(self.input_size, 1).to(self.device) self.target_value_net = ValueNetwork(self.input_size, 1).to(self.device) self.q_net1 = SoftQNetwork(self.input_size, self.action_dim).to(self.device) self.q_net2 = SoftQNetwork(self.input_size, self.action_dim).to(self.device) self.policy_net = PolicyNetwork(self.input_size, self.action_dim).to(self.device) print("Finished initing all nets") # copy params to target param for target_param, param in zip(self.target_value_net.parameters(), self.value_net.parameters()): target_param.data.copy_(param) print("Finished copying targets") # initialize optimizers self.value_optimizer = optim.Adam(self.value_net.parameters(), lr=v_lr) self.q1_optimizer = optim.Adam(self.q_net1.parameters(), lr=q_lr) self.q2_optimizer = optim.Adam(self.q_net2.parameters(), lr=q_lr) self.policy_optimizer = optim.Adam(self.policy_net.parameters(), lr=policy_lr) print("Finished initing optimizers") self.replay_buffer = BasicBuffer(buffer_maxlen) print("End of init") def get_action(self, state): if state.shape != self.img_size: print( f"Invalid size, expected shape {self.img_size}, got {state.shape}" ) return None inp = torch.from_numpy(state).float().permute(2, 0, 1).unsqueeze(0).to( self.device) features = self.feature_net(inp) features = features.view(-1, self.input_size) mean, log_std = self.policy_net.forward(features) std = log_std.exp() normal = Normal(mean, std) z = normal.sample() action = torch.tanh(z) action = action.cpu().detach().squeeze(0).numpy() return self.rescale_action(action) def rescale_action(self, action): return action * (self.action_range[1] - self.action_range[0]) / 2.0 +\ (self.action_range[1] + self.action_range[0]) / 2.0 def update(self, batch_size): states, actions, rewards, next_states, dones = self.replay_buffer.sample( batch_size) # states and next states are lists of ndarrays, np.stack converts them to # ndarrays of shape (batch_size, height, width, num_channels) states = np.stack(states) next_states = np.stack(next_states) states = torch.FloatTensor(states).permute(0, 3, 1, 2).to(self.device) actions = torch.FloatTensor(actions).to(self.device) rewards = torch.FloatTensor(rewards).to(self.device) next_states = torch.FloatTensor(next_states).permute(0, 3, 1, 2).to(self.device) dones = torch.FloatTensor(dones).to(self.device) dones = dones.view(dones.size(0), -1) # Process images features = self.feature_net( states) #.contiguous() # Properly shaped due to batching next_features = self.feature_net(next_states) #.contiguous() features = torch.reshape(features, (64, self.input_size)) next_features = torch.reshape(next_features, (64, self.input_size)) next_actions, next_log_pi = self.policy_net.sample(next_features) next_q1 = self.q_net1(next_features, next_actions) next_q2 = self.q_net2(next_features, next_actions) next_v = self.target_value_net(next_features) next_v_target = torch.min(next_q1, next_q2) - next_log_pi curr_v = self.value_net.forward(features) v_loss = F.mse_loss(curr_v, next_v_target.detach()) # q loss expected_q = rewards + (1 - dones) * self.gamma * next_v curr_q1 = self.q_net1.forward(features, actions) curr_q2 = self.q_net2.forward(features, actions) q1_loss = F.mse_loss(curr_q1, expected_q.detach()) q2_loss = F.mse_loss(curr_q2, expected_q.detach()) # update value and q networks self.value_optimizer.zero_grad() v_loss.backward(retain_graph=True) self.value_optimizer.step() self.q1_optimizer.zero_grad() q1_loss.backward(retain_graph=True) self.q1_optimizer.step() self.q2_optimizer.zero_grad() q2_loss.backward(retain_graph=True) self.q2_optimizer.step() # delayed update for policy network and target q networks if self.update_step % self.delay_step == 0: new_actions, log_pi = self.policy_net.sample(features) min_q = torch.min(self.q_net1.forward(features, new_actions), self.q_net2.forward(features, new_actions)) policy_loss = (log_pi - min_q).mean() self.policy_optimizer.zero_grad() policy_loss.backward(retain_graph=True) self.policy_optimizer.step() # target networks for target_param, param in zip(self.target_value_net.parameters(), self.value_net.parameters()): target_param.data.copy_(self.tau * param + (1 - self.tau) * target_param) self.update_step += 1