def classifier_lda_modular (train_fname=traindat,test_fname=testdat,label_fname=label_traindat,gamma=3,num_threads=1): from modshogun import RealFeatures, BinaryLabels, LDA, CSVFile feats_train=RealFeatures(CSVFile(train_fname)) feats_test=RealFeatures(CSVFile(test_fname)) labels=BinaryLabels(CSVFile(label_fname)) lda=LDA(gamma, feats_train, labels) lda.train() bias=lda.get_bias() w=lda.get_w() predictions = lda.apply(feats_test).get_labels() return lda,predictions
def classifier_lda_modular(train_fname=traindat, test_fname=testdat, label_fname=label_traindat, gamma=3, num_threads=1): from modshogun import RealFeatures, BinaryLabels, LDA, CSVFile feats_train = RealFeatures(CSVFile(train_fname)) feats_test = RealFeatures(CSVFile(test_fname)) labels = BinaryLabels(CSVFile(label_fname)) lda = LDA(gamma, feats_train, labels) lda.train() bias = lda.get_bias() w = lda.get_w() predictions = lda.apply(feats_test).get_labels() return lda, predictions
import util util.set_title('PRC example') util.DISTANCE=0.5 subplots_adjust(hspace=0.3) pos=util.get_realdata(True) neg=util.get_realdata(False) features=util.get_realfeatures(pos, neg) labels=util.get_labels() # classifiers gk=GaussianKernel(features, features, 1.0) svm = LibSVM(1000.0, gk, labels) svm.train() lda=LDA(1,features,labels) lda.train() ## plot points subplot(211) plot(pos[0,:], pos[1,:], "r.") plot(neg[0,:], neg[1,:], "b.") grid(True) title('Data',size=10) # plot PRC for SVM subplot(223) PRC_evaluation=PRCEvaluation() PRC_evaluation.evaluate(svm.apply(),labels) PRC = PRC_evaluation.get_PRC() plot(PRC[0], PRC[1])
import util util.set_title('ROC example') util.DISTANCE=0.5 subplots_adjust(hspace=0.3) pos=util.get_realdata(True) neg=util.get_realdata(False) features=util.get_realfeatures(pos, neg) labels=util.get_labels() # classifiers gk=GaussianKernel(features, features, 1.0) svm = LibSVM(1000.0, gk, labels) svm.train() lda=LDA(1,features,labels) lda.train() ## plot points subplot(211) plot(pos[0,:], pos[1,:], "r.") plot(neg[0,:], neg[1,:], "b.") grid(True) title('Data',size=10) # plot ROC for SVM subplot(223) ROC_evaluation=ROCEvaluation() ROC_evaluation.evaluate(svm.apply(),labels) roc = ROC_evaluation.get_ROC() print roc