def classifier_multiclassmachine_modular(fm_train_real=traindat, fm_test_real=testdat, label_train_multiclass=label_traindat, width=2.1, C=1, epsilon=1e-5): from modshogun import RealFeatures, MulticlassLabels from modshogun import GaussianKernel from modshogun import LibSVM, KernelMulticlassMachine, MulticlassOneVsRestStrategy feats_train = RealFeatures(fm_train_real) feats_test = RealFeatures(fm_test_real) kernel = GaussianKernel(feats_train, feats_train, width) labels = MulticlassLabels(label_train_multiclass) classifier = LibSVM() classifier.set_epsilon(epsilon) #print labels.get_labels() mc_classifier = KernelMulticlassMachine(MulticlassOneVsRestStrategy(), kernel, classifier, labels) mc_classifier.train() kernel.init(feats_train, feats_test) out = mc_classifier.apply().get_labels() return out
def runShogunSVMDNAOligoStringKernel(train_xt, train_lt, test_xt): """ run svm with spectrum kernel """ ################################################## # set up svm feats_train = StringCharFeatures(train_xt, DNA) feats_test = StringCharFeatures(test_xt, DNA) kernel=OligoStringKernel(10, K, WIDTH) kernel.io.set_loglevel(MSG_DEBUG) kernel.init(feats_train, feats_train) # init kernel labels = BinaryLabels(train_lt) # run svm model print "Ready to train!" svm=LibSVM(SVMC, kernel, labels) svm.io.set_loglevel(MSG_DEBUG) svm.train() # predictions print "Making predictions!" out1DecisionValues = svm.apply(feats_train) out1=out1DecisionValues.get_labels() kernel.init(feats_train, feats_test) out2DecisionValues = svm.apply(feats_test) out2=out2DecisionValues.get_labels() return out1,out2,out1DecisionValues,out2DecisionValues
def runShogunSVMDNALocalAlignmentKernel(train_xt, train_lt, test_xt): """ run svm with spectrum kernel """ ################################################## # set up svm feats_train = StringCharFeatures(train_xt, DNA) feats_test = StringCharFeatures(test_xt, DNA) kernel=LocalAlignmentStringKernel(feats_train, feats_train) kernel.io.set_loglevel(MSG_DEBUG) # init kernel labels = BinaryLabels(train_lt) # run svm model print "Ready to train!" svm=LibSVM(SVMC, kernel, labels) svm.io.set_loglevel(MSG_DEBUG) svm.train() # predictions print "Making predictions!" out1=svm.apply(feats_train).get_labels() kernel.init(feats_train, feats_test) out2=svm.apply(feats_test).get_labels() return out1,out2
def classifier_libsvm_minimal_modular (train_fname=traindat,test_fname=testdat,label_fname=label_traindat,width=2.1,C=1): from modshogun import RealFeatures, BinaryLabels from modshogun import LibSVM, GaussianKernel, CSVFile from modshogun import ErrorRateMeasure feats_train=RealFeatures(CSVFile(train_fname)) feats_test=RealFeatures(CSVFile(test_fname)) labels=BinaryLabels(CSVFile(label_fname)) kernel=GaussianKernel(feats_train, feats_train, width); svm=LibSVM(C, kernel, labels); svm.train(); out=svm.apply(feats_train); evaluator = ErrorRateMeasure() testerr = evaluator.evaluate(out,labels)
def modelselection_grid_search_kernel(num_subsets, num_vectors, dim_vectors): # init seed for reproducability Math.init_random(1) random.seed(1) # create some (non-sense) data matrix = random.rand(dim_vectors, num_vectors) # create num_feautres 2-dimensional vectors features = RealFeatures() features.set_feature_matrix(matrix) # create labels, two classes labels = BinaryLabels(num_vectors) for i in range(num_vectors): labels.set_label(i, 1 if i % 2 == 0 else -1) # create svm classifier = LibSVM() # splitting strategy splitting_strategy = StratifiedCrossValidationSplitting( labels, num_subsets) # accuracy evaluation evaluation_criterion = ContingencyTableEvaluation(ACCURACY) # cross validation class for evaluation in model selection cross = CrossValidation(classifier, features, labels, splitting_strategy, evaluation_criterion) cross.set_num_runs(1) # print all parameter available for modelselection # Dont worry if yours is not included, simply write to the mailing list #classifier.print_modsel_params() # model parameter selection param_tree = create_param_tree() #param_tree.print_tree() grid_search = GridSearchModelSelection(cross, param_tree) print_state = False best_combination = grid_search.select_model(print_state) #print("best parameter(s):") #best_combination.print_tree() best_combination.apply_to_machine(classifier) # larger number of runs to have tighter confidence intervals cross.set_num_runs(10) cross.set_conf_int_alpha(0.01) result = cross.evaluate() casted = CrossValidationResult.obtain_from_generic(result) #print "result mean:", casted.mean return classifier, result, casted.mean
def evaluation_cross_validation_mkl_weight_storage( traindat=traindat, label_traindat=label_traindat): from modshogun import CrossValidation, CrossValidationResult from modshogun import CrossValidationPrintOutput from modshogun import CrossValidationMKLStorage from modshogun import ContingencyTableEvaluation, ACCURACY from modshogun import StratifiedCrossValidationSplitting from modshogun import BinaryLabels from modshogun import RealFeatures, CombinedFeatures from modshogun import GaussianKernel, CombinedKernel from modshogun import LibSVM, MKLClassification # training data, combined features all on same data features = RealFeatures(traindat) comb_features = CombinedFeatures() comb_features.append_feature_obj(features) comb_features.append_feature_obj(features) comb_features.append_feature_obj(features) labels = BinaryLabels(label_traindat) # kernel, different Gaussians combined kernel = CombinedKernel() kernel.append_kernel(GaussianKernel(10, 0.1)) kernel.append_kernel(GaussianKernel(10, 1)) kernel.append_kernel(GaussianKernel(10, 2)) # create mkl using libsvm, due to a mem-bug, interleaved is not possible svm = MKLClassification(LibSVM()) svm.set_interleaved_optimization_enabled(False) svm.set_kernel(kernel) # splitting strategy for 5 fold cross-validation (for classification its better # to use "StratifiedCrossValidation", but the standard # "StratifiedCrossValidationSplitting" is also available splitting_strategy = StratifiedCrossValidationSplitting(labels, 5) # evaluation method evaluation_criterium = ContingencyTableEvaluation(ACCURACY) # cross-validation instance cross_validation = CrossValidation(svm, comb_features, labels, splitting_strategy, evaluation_criterium) cross_validation.set_autolock(False) # append cross vlaidation output classes #cross_validation.add_cross_validation_output(CrossValidationPrintOutput()) mkl_storage = CrossValidationMKLStorage() cross_validation.add_cross_validation_output(mkl_storage) cross_validation.set_num_runs(3) # perform cross-validation result = cross_validation.evaluate() # print mkl weights weights = mkl_storage.get_mkl_weights()
def classifier_custom_kernel_modular (C=1,dim=7): from modshogun import RealFeatures, BinaryLabels, CustomKernel, LibSVM from numpy import diag,ones,sign from numpy.random import rand,seed seed((C,dim)) lab=sign(2*rand(dim) - 1) data=rand(dim, dim) symdata=data*data.T + diag(ones(dim)) kernel=CustomKernel() kernel.set_full_kernel_matrix_from_full(data) labels=BinaryLabels(lab) svm=LibSVM(C, kernel, labels) svm.train() predictions =svm.apply() out=svm.apply().get_labels() return svm,out
def runShogunSVMProteinPolyMatchSpectrumKernel(train_xt, train_lt, test_xt): """ run svm with spectrum kernel """ ################################################## # set up svm charfeat_train = StringCharFeatures(train_xt, DNA) feats_train = StringWordFeatures(DNA) feats_train.obtain_from_char(charfeat_train, K-1, K, GAP, False) preproc=SortWordString() preproc.init(feats_train) feats_train.add_preprocessor(preproc) feats_train.apply_preprocessor() charfeat_test = StringCharFeatures(test_xt, DNA) feats_test=StringWordFeatures(DNA) feats_test.obtain_from_char(charfeat_test, K-1, K, GAP, False) feats_test.add_preprocessor(preproc) feats_test.apply_preprocessor() kernel=PolyMatchWordStringKernel(feats_train, feats_train, DEGREE, True) kernel.io.set_loglevel(MSG_DEBUG) # init kernel labels = BinaryLabels(train_lt) # run svm model print "Ready to train!" svm=LibSVM(SVMC, kernel, labels) svm.io.set_loglevel(MSG_DEBUG) svm.train() # predictions print "Making predictions!" out1DecisionValues = svm.apply(feats_train) out1=out1DecisionValues.get_labels() kernel.init(feats_train, feats_test) out2DecisionValues = svm.apply(feats_test) out2=out2DecisionValues.get_labels() return out1,out2,out1DecisionValues,out2DecisionValues
def classifier_libsvm_minimal_modular(train_fname=traindat, test_fname=testdat, label_fname=label_traindat, width=2.1, C=1): from modshogun import RealFeatures, BinaryLabels from modshogun import LibSVM, GaussianKernel, CSVFile from modshogun import ErrorRateMeasure feats_train = RealFeatures(CSVFile(train_fname)) feats_test = RealFeatures(CSVFile(test_fname)) labels = BinaryLabels(CSVFile(label_fname)) kernel = GaussianKernel(feats_train, feats_train, width) svm = LibSVM(C, kernel, labels) svm.train() out = svm.apply(feats_train) evaluator = ErrorRateMeasure() testerr = evaluator.evaluate(out, labels)
def classifier_multiclassmachine_modular (fm_train_real=traindat,fm_test_real=testdat,label_train_multiclass=label_traindat,width=2.1,C=1,epsilon=1e-5): from modshogun import RealFeatures, MulticlassLabels from modshogun import GaussianKernel from modshogun import LibSVM, KernelMulticlassMachine, MulticlassOneVsRestStrategy feats_train=RealFeatures(fm_train_real) feats_test=RealFeatures(fm_test_real) kernel=GaussianKernel(feats_train, feats_train, width) labels=MulticlassLabels(label_train_multiclass) classifier = LibSVM() classifier.set_epsilon(epsilon) #print labels.get_labels() mc_classifier = KernelMulticlassMachine(MulticlassOneVsRestStrategy(),kernel,classifier,labels) mc_classifier.train() kernel.init(feats_train, feats_test) out = mc_classifier.apply().get_labels() return out
def runShogunSVMDNAWDKernel(train_xt, train_lt, test_xt): """ run svm with string kernels """ ################################################## # set up svm feats_train = StringCharFeatures(train_xt, DNA) feats_test = StringCharFeatures(test_xt, DNA) kernel = WeightedDegreePositionStringKernel(feats_train, feats_train, DEGREE) kernel.io.set_loglevel(MSG_DEBUG) kernel.set_shifts(NUMSHIFTS * ones(len(train_xt[0]), dtype=int32)) kernel.set_position_weights(ones(len(train_xt[0]), dtype=float64)) # init kernel labels = BinaryLabels(train_lt) # run svm model print "Ready to train!" svm = LibSVM(SVMC, kernel, labels) svm.io.set_loglevel(MSG_DEBUG) svm.train() # predictions print "Making predictions!" out1DecisionValues = svm.apply(feats_train) out1 = out1DecisionValues.get_labels() kernel.init(feats_train, feats_test) out2DecisionValues = svm.apply(feats_test) out2 = out2DecisionValues.get_labels() return out1, out2, out1DecisionValues, out2DecisionValues
def runShogunSVMDNAWDNoPositionKernel(train_xt, train_lt, test_xt): """ run svm with non-position WD kernel """ ################################################## # set up svm feats_train = StringCharFeatures(train_xt, DNA) feats_test = StringCharFeatures(test_xt, DNA) kernel = WeightedDegreeStringKernel(feats_train, feats_train, DEGREE) kernel.io.set_loglevel(MSG_DEBUG) weights=arange(1,DEGREE+1,dtype=double)[::-1]/ \ sum(arange(1,DEGREE+1,dtype=double)) kernel.set_wd_weights(weights) # init kernel labels = BinaryLabels(train_lt) # run svm model print "Ready to train!" svm = LibSVM(SVMC, kernel, labels) svm.io.set_loglevel(MSG_DEBUG) svm.train() # predictions print "Making predictions!" out1 = svm.apply(feats_train).get_labels() kernel.init(feats_train, feats_test) out2 = svm.apply(feats_test).get_labels() return out1, out2
def classifier_ssk_modular(fm_train_dna=traindat, fm_test_dna=testdat, label_train_dna=label_traindat, C=1, maxlen=1, decay=1): from modshogun import StringCharFeatures, BinaryLabels from modshogun import LibSVM, StringSubsequenceKernel, DNA from modshogun import ErrorRateMeasure feats_train = StringCharFeatures(fm_train_dna, DNA) feats_test = StringCharFeatures(fm_test_dna, DNA) labels = BinaryLabels(label_train_dna) kernel = StringSubsequenceKernel(feats_train, feats_train, maxlen, decay) svm = LibSVM(C, kernel, labels) svm.train() out = svm.apply(feats_train) evaluator = ErrorRateMeasure() trainerr = evaluator.evaluate(out, labels) # print(trainerr) kernel.init(feats_train, feats_test) predicted_labels = svm.apply(feats_test).get_labels() # print predicted_labels return predicted_labels
def runShogunSVMDNASubsequenceStringKernel(train_xt, train_lt, test_xt): """ run svm with spectrum kernel """ ################################################## # set up svm feats_train = StringCharFeatures(train_xt, DNA) feats_test = StringCharFeatures(test_xt, DNA) kernel = SubsequenceStringKernel(feats_train, feats_train, MAXLEN, DECAY) kernel.io.set_loglevel(MSG_DEBUG) kernel.init(feats_train, feats_train) # init kernel labels = BinaryLabels(train_lt) # run svm model print "Ready to train!" svm = LibSVM(SVMC, kernel, labels) svm.io.set_loglevel(MSG_DEBUG) svm.train() # predictions print "Making predictions!" out1DecisionValues = svm.apply(feats_train) out1 = out1DecisionValues.get_labels() kernel.init(feats_train, feats_test) out2DecisionValues = svm.apply(feats_test) out2 = out2DecisionValues.get_labels() return out1, out2, out1DecisionValues, out2DecisionValues
def runShogunSVMDNALinearStringKernel(train_xt, train_lt, test_xt): """ run svm with spectrum kernel """ ################################################## # set up svm feats_train = StringCharFeatures(train_xt, DNA) feats_test = StringCharFeatures(test_xt, DNA) kernel = LinearStringKernel(feats_train, feats_train) kernel.io.set_loglevel(MSG_DEBUG) # init kernel labels = BinaryLabels(train_lt) # run svm model print "Ready to train!" svm = LibSVM(SVMC, kernel, labels) svm.io.set_loglevel(MSG_DEBUG) svm.train() # predictions print "Making predictions!" out1 = svm.apply(feats_train).get_labels() kernel.init(feats_train, feats_test) out2 = svm.apply(feats_test).get_labels() return out1, out2
def kernel_combined_custom_poly_modular(train_fname=traindat, test_fname=testdat, train_label_fname=label_traindat): from modshogun import CombinedFeatures, RealFeatures, BinaryLabels from modshogun import CombinedKernel, PolyKernel, CustomKernel from modshogun import LibSVM, CSVFile kernel = CombinedKernel() feats_train = CombinedFeatures() tfeats = RealFeatures(CSVFile(train_fname)) tkernel = PolyKernel(10, 3) tkernel.init(tfeats, tfeats) K = tkernel.get_kernel_matrix() kernel.append_kernel(CustomKernel(K)) subkfeats_train = RealFeatures(CSVFile(train_fname)) feats_train.append_feature_obj(subkfeats_train) subkernel = PolyKernel(10, 2) kernel.append_kernel(subkernel) kernel.init(feats_train, feats_train) labels = BinaryLabels(CSVFile(train_label_fname)) svm = LibSVM(1.0, kernel, labels) svm.train() kernel = CombinedKernel() feats_pred = CombinedFeatures() pfeats = RealFeatures(CSVFile(test_fname)) tkernel = PolyKernel(10, 3) tkernel.init(tfeats, pfeats) K = tkernel.get_kernel_matrix() kernel.append_kernel(CustomKernel(K)) subkfeats_test = RealFeatures(CSVFile(test_fname)) feats_pred.append_feature_obj(subkfeats_test) subkernel = PolyKernel(10, 2) kernel.append_kernel(subkernel) kernel.init(feats_train, feats_pred) svm.set_kernel(kernel) svm.apply() km_train = kernel.get_kernel_matrix() return km_train, kernel
def classifier_ssk_modular (fm_train_dna=traindat,fm_test_dna=testdat, label_train_dna=label_traindat,C=1,maxlen=1,decay=1): from modshogun import StringCharFeatures, BinaryLabels from modshogun import LibSVM, StringSubsequenceKernel, DNA from modshogun import ErrorRateMeasure feats_train=StringCharFeatures(fm_train_dna, DNA) feats_test=StringCharFeatures(fm_test_dna, DNA) labels=BinaryLabels(label_train_dna) kernel=StringSubsequenceKernel(feats_train, feats_train, maxlen, decay); svm=LibSVM(C, kernel, labels); svm.train(); out=svm.apply(feats_train); evaluator = ErrorRateMeasure() trainerr = evaluator.evaluate(out,labels) # print(trainerr) kernel.init(feats_train, feats_test) predicted_labels=svm.apply(feats_test).get_labels() # print predicted_labels return predicted_labels
def classifier_libsvm_modular (train_fname=traindat,test_fname=testdat,label_fname=label_traindat,width=2.1,C=1,epsilon=1e-5): from modshogun import RealFeatures, BinaryLabels from modshogun import GaussianKernel, LibSVM, CSVFile feats_train=RealFeatures(CSVFile(train_fname)) feats_test=RealFeatures(CSVFile(test_fname)) labels=BinaryLabels(CSVFile(label_fname)) kernel=GaussianKernel(feats_train, feats_train, width) svm=LibSVM(C, kernel, labels) svm.set_epsilon(epsilon) svm.train() supportvectors = sv_idx=svm.get_support_vectors() alphas=svm.get_alphas() predictions = svm.apply(feats_test) #print predictions.get_labels() return predictions, svm, predictions.get_labels()
def runShogunSVMDNACombinedSpectrumKernel(train_xt, train_lt, test_xt): """ run svm with combined spectrum kernel """ ################################################## # set up svm kernel=CombinedKernel() feats_train=CombinedFeatures() feats_test=CombinedFeatures() for K in KList: # Iterate through the K's and make a spectrum kernel for each charfeat_train = StringCharFeatures(train_xt, DNA) current_feats_train = StringWordFeatures(DNA) current_feats_train.obtain_from_char(charfeat_train, K-1, K, GAP, False) preproc=SortWordString() preproc.init(current_feats_train) current_feats_train.add_preprocessor(preproc) current_feats_train.apply_preprocessor() feats_train.append_feature_obj(current_feats_train) charfeat_test = StringCharFeatures(test_xt, DNA) current_feats_test=StringWordFeatures(DNA) current_feats_test.obtain_from_char(charfeat_test, K-1, K, GAP, False) current_feats_test.add_preprocessor(preproc) current_feats_test.apply_preprocessor() feats_test.append_feature_obj(current_feats_test) current_kernel=CommWordStringKernel(10, False) kernel.append_kernel(current_kernel) kernel.io.set_loglevel(MSG_DEBUG) # init kernel labels = BinaryLabels(train_lt) # run svm model print "Ready to train!" kernel.init(feats_train, feats_train) svm=LibSVM(SVMC, kernel, labels) svm.io.set_loglevel(MSG_DEBUG) svm.train() # predictions print "Making predictions!" out1DecisionValues = svm.apply(feats_train) out1=out1DecisionValues.get_labels() kernel.init(feats_train, feats_test) out2DecisionValues = svm.apply(feats_test) out2=out2DecisionValues.get_labels() return out1,out2,out1DecisionValues,out2DecisionValues
def classifier_libsvm_modular(train_fname=traindat, test_fname=testdat, label_fname=label_traindat, width=2.1, C=1, epsilon=1e-5): from modshogun import RealFeatures, BinaryLabels from modshogun import GaussianKernel, LibSVM, CSVFile feats_train = RealFeatures(CSVFile(train_fname)) feats_test = RealFeatures(CSVFile(test_fname)) labels = BinaryLabels(CSVFile(label_fname)) kernel = GaussianKernel(feats_train, feats_train, width) svm = LibSVM(C, kernel, labels) svm.set_epsilon(epsilon) svm.train() supportvectors = sv_idx = svm.get_support_vectors() alphas = svm.get_alphas() predictions = svm.apply(feats_test) #print predictions.get_labels() return predictions, svm, predictions.get_labels()
def kernel_combined_custom_poly_modular (train_fname = traindat,test_fname = testdat,train_label_fname=label_traindat): from modshogun import CombinedFeatures, RealFeatures, BinaryLabels from modshogun import CombinedKernel, PolyKernel, CustomKernel from modshogun import LibSVM, CSVFile kernel = CombinedKernel() feats_train = CombinedFeatures() tfeats = RealFeatures(CSVFile(train_fname)) tkernel = PolyKernel(10,3) tkernel.init(tfeats, tfeats) K = tkernel.get_kernel_matrix() kernel.append_kernel(CustomKernel(K)) subkfeats_train = RealFeatures(CSVFile(train_fname)) feats_train.append_feature_obj(subkfeats_train) subkernel = PolyKernel(10,2) kernel.append_kernel(subkernel) kernel.init(feats_train, feats_train) labels = BinaryLabels(CSVFile(train_label_fname)) svm = LibSVM(1.0, kernel, labels) svm.train() kernel = CombinedKernel() feats_pred = CombinedFeatures() pfeats = RealFeatures(CSVFile(test_fname)) tkernel = PolyKernel(10,3) tkernel.init(tfeats, pfeats) K = tkernel.get_kernel_matrix() kernel.append_kernel(CustomKernel(K)) subkfeats_test = RealFeatures(CSVFile(test_fname)) feats_pred.append_feature_obj(subkfeats_test) subkernel = PolyKernel(10, 2) kernel.append_kernel(subkernel) kernel.init(feats_train, feats_pred) svm.set_kernel(kernel) svm.apply() km_train=kernel.get_kernel_matrix() return km_train,kernel
def runShogunSVMDNAUlongSpectrumKernel(train_xt, train_lt, test_xt): """ run svm with ulong spectrum kernel """ ################################################## # set up svr charfeat_train = StringCharFeatures(train_xt, DNA) feats_train = StringUlongFeatures(DNA) feats_train.obtain_from_char(charfeat_train, K - 1, K, GAP, False) preproc = SortUlongString() preproc.init(feats_train) feats_train.add_preprocessor(preproc) feats_train.apply_preprocessor() charfeat_test = StringCharFeatures(test_xt, DNA) feats_test = StringUlongFeatures(DNA) feats_test.obtain_from_char(charfeat_test, K - 1, K, GAP, False) feats_test.add_preprocessor(preproc) feats_test.apply_preprocessor() kernel = CommUlongStringKernel(feats_train, feats_train, False) kernel.io.set_loglevel(MSG_DEBUG) # init kernel labels = BinaryLabels(train_lt) # run svm model print "Ready to train!" svm = LibSVM(SVMC, kernel, labels) svm.io.set_loglevel(MSG_DEBUG) svm.train() # predictions print "Making predictions!" out1DecisionValues = svm.apply(feats_train) out1 = out1DecisionValues.get_labels() kernel.init(feats_train, feats_test) out2DecisionValues = svm.apply(feats_test) out2 = svm.apply(feats_test).get_labels() return out1, out2, out1DecisionValues, out2DecisionValues
def classifier_custom_kernel_modular(C=1, dim=7): from modshogun import RealFeatures, BinaryLabels, CustomKernel, LibSVM from numpy import diag, ones, sign from numpy.random import rand, seed seed((C, dim)) lab = sign(2 * rand(dim) - 1) data = rand(dim, dim) symdata = data * data.T + diag(ones(dim)) kernel = CustomKernel() kernel.set_full_kernel_matrix_from_full(data) labels = BinaryLabels(lab) svm = LibSVM(C, kernel, labels) svm.train() predictions = svm.apply() out = svm.apply().get_labels() return svm, out
def runShogunSVMProteinPolyMatchSpectrumKernel(train_xt, train_lt, test_xt): """ run svm with spectrum kernel """ ################################################## # set up svm charfeat_train = StringCharFeatures(train_xt, PROTEIN) feats_train = StringWordFeatures(PROTEIN) feats_train.obtain_from_char(charfeat_train, K - 1, K, GAP, False) preproc = SortWordString() preproc.init(feats_train) feats_train.add_preprocessor(preproc) feats_train.apply_preprocessor() charfeat_test = StringCharFeatures(test_xt, PROTEIN) feats_test = StringWordFeatures(PROTEIN) feats_test.obtain_from_char(charfeat_test, K - 1, K, GAP, False) feats_test.add_preprocessor(preproc) feats_test.apply_preprocessor() kernel = PolyMatchWordStringKernel(feats_train, feats_train, 2, True) kernel.io.set_loglevel(MSG_DEBUG) # init kernel labels = BinaryLabels(train_lt) # run svm model print "Ready to train!" svm = LibSVM(SVMC, kernel, labels) svm.io.set_loglevel(MSG_DEBUG) svm.train() # predictions print "Making predictions!" out1DecisionValues = svm.apply(feats_train) out1 = out1DecisionValues.get_labels() kernel.init(feats_train, feats_test) out2DecisionValues = svm.apply(feats_test) out2 = out2DecisionValues.get_labels() return out1, out2, out1DecisionValues, out2DecisionValues
from numpy import random from modshogun import LibSVM from modshogun import RealFeatures, Labels from modshogun import LinearKernel num_feats=23 num_vec=42 scale=2.1 size_cache=10 C=0.017 epsilon=1e-5 tube_epsilon=1e-2 svm=LibSVM() svm.set_C(C, C) svm.set_epsilon(epsilon) svm.set_tube_epsilon(tube_epsilon) for i in range(3): data_train=random.rand(num_feats, num_vec) data_test=random.rand(num_feats, num_vec) feats_train=RealFeatures(data_train) feats_test=RealFeatures(data_test) labels=Labels(random.rand(num_vec).round()*2-1) svm.set_kernel(LinearKernel(size_cache, scale)) svm.set_labels(labels) kernel=svm.get_kernel()
from modshogun import LibSVM, LDA from modshogun import PRCEvaluation import util util.set_title('PRC example') util.DISTANCE=0.5 subplots_adjust(hspace=0.3) pos=util.get_realdata(True) neg=util.get_realdata(False) features=util.get_realfeatures(pos, neg) labels=util.get_labels() # classifiers gk=GaussianKernel(features, features, 1.0) svm = LibSVM(1000.0, gk, labels) svm.train() lda=LDA(1,features,labels) lda.train() ## plot points subplot(211) plot(pos[0,:], pos[1,:], "r.") plot(neg[0,:], neg[1,:], "b.") grid(True) title('Data',size=10) # plot PRC for SVM subplot(223) PRC_evaluation=PRCEvaluation() PRC_evaluation.evaluate(svm.apply(),labels)
from modshogun import LibSVM, LDA from modshogun import ROCEvaluation import util util.set_title('ROC example') util.DISTANCE=0.5 subplots_adjust(hspace=0.3) pos=util.get_realdata(True) neg=util.get_realdata(False) features=util.get_realfeatures(pos, neg) labels=util.get_labels() # classifiers gk=GaussianKernel(features, features, 1.0) svm = LibSVM(1000.0, gk, labels) svm.train() lda=LDA(1,features,labels) lda.train() ## plot points subplot(211) plot(pos[0,:], pos[1,:], "r.") plot(neg[0,:], neg[1,:], "b.") grid(True) title('Data',size=10) # plot ROC for SVM subplot(223) ROC_evaluation=ROCEvaluation() ROC_evaluation.evaluate(svm.apply(),labels)