def classifier_multiclass_ecoc_random(fm_train_real=traindat,
                                      fm_test_real=testdat,
                                      label_train_multiclass=label_traindat,
                                      label_test_multiclass=label_testdat,
                                      lawidth=2.1,
                                      C=1,
                                      epsilon=1e-5):
    from modshogun import RealFeatures, MulticlassLabels
    from modshogun import LibLinear, L2R_L2LOSS_SVC, LinearMulticlassMachine
    from modshogun import ECOCStrategy, ECOCRandomSparseEncoder, ECOCRandomDenseEncoder, ECOCHDDecoder
    from modshogun import Math_init_random
    Math_init_random(12345)

    feats_train = RealFeatures(fm_train_real)
    feats_test = RealFeatures(fm_test_real)

    labels = MulticlassLabels(label_train_multiclass)

    classifier = LibLinear(L2R_L2LOSS_SVC)
    classifier.set_epsilon(epsilon)
    classifier.set_bias_enabled(True)

    rnd_dense_strategy = ECOCStrategy(ECOCRandomDenseEncoder(),
                                      ECOCHDDecoder())
    rnd_sparse_strategy = ECOCStrategy(ECOCRandomSparseEncoder(),
                                       ECOCHDDecoder())

    dense_classifier = LinearMulticlassMachine(rnd_dense_strategy, feats_train,
                                               classifier, labels)
    dense_classifier.train()
    label_dense = dense_classifier.apply(feats_test)
    out_dense = label_dense.get_labels()

    sparse_classifier = LinearMulticlassMachine(rnd_sparse_strategy,
                                                feats_train, classifier,
                                                labels)
    sparse_classifier.train()
    label_sparse = sparse_classifier.apply(feats_test)
    out_sparse = label_sparse.get_labels()

    if label_test_multiclass is not None:
        from modshogun import MulticlassAccuracy
        labels_test = MulticlassLabels(label_test_multiclass)
        evaluator = MulticlassAccuracy()
        acc_dense = evaluator.evaluate(label_dense, labels_test)
        acc_sparse = evaluator.evaluate(label_sparse, labels_test)
        print('Random Dense Accuracy  = %.4f' % acc_dense)
        print('Random Sparse Accuracy = %.4f' % acc_sparse)

    return out_sparse, out_dense
def classifier_multiclass_ecoc_ovr(fm_train_real=traindat,
                                   fm_test_real=testdat,
                                   label_train_multiclass=label_traindat,
                                   label_test_multiclass=label_testdat,
                                   lawidth=2.1,
                                   C=1,
                                   epsilon=1e-5):
    from modshogun import RealFeatures, MulticlassLabels
    from modshogun import LibLinear, L2R_L2LOSS_SVC, LinearMulticlassMachine
    from modshogun import ECOCStrategy, ECOCOVREncoder, ECOCLLBDecoder, MulticlassOneVsRestStrategy

    feats_train = RealFeatures(fm_train_real)
    feats_test = RealFeatures(fm_test_real)

    labels = MulticlassLabels(label_train_multiclass)

    classifier = LibLinear(L2R_L2LOSS_SVC)
    classifier.set_epsilon(epsilon)
    classifier.set_bias_enabled(True)

    mc_classifier = LinearMulticlassMachine(MulticlassOneVsRestStrategy(),
                                            feats_train, classifier, labels)
    mc_classifier.train()
    label_mc = mc_classifier.apply(feats_test)
    out_mc = label_mc.get_labels()

    ecoc_strategy = ECOCStrategy(ECOCOVREncoder(), ECOCLLBDecoder())
    ecoc_classifier = LinearMulticlassMachine(ecoc_strategy, feats_train,
                                              classifier, labels)
    ecoc_classifier.train()
    label_ecoc = ecoc_classifier.apply(feats_test)
    out_ecoc = label_ecoc.get_labels()

    n_diff = (out_mc != out_ecoc).sum()
    #if n_diff == 0:
    #	print("Same results for OvR and ECOCOvR")
    #else:
    #	print("Different results for OvR and ECOCOvR (%d out of %d are different)" % (n_diff, len(out_mc)))

    if label_test_multiclass is not None:
        from modshogun import MulticlassAccuracy
        labels_test = MulticlassLabels(label_test_multiclass)
        evaluator = MulticlassAccuracy()
        acc_mc = evaluator.evaluate(label_mc, labels_test)
        acc_ecoc = evaluator.evaluate(label_ecoc, labels_test)
        #print('Normal OVR Accuracy = %.4f' % acc_mc)
        #print('ECOC OVR Accuracy   = %.4f' % acc_ecoc)

    return out_ecoc, out_mc
def classifier_multiclasslinearmachine_modular(
        fm_train_real=traindat,
        fm_test_real=testdat,
        label_train_multiclass=label_traindat,
        label_test_multiclass=label_testdat,
        width=2.1,
        C=1,
        epsilon=1e-5):
    from modshogun import RealFeatures, MulticlassLabels
    from modshogun import LibLinear, L2R_L2LOSS_SVC, LinearMulticlassMachine, MulticlassOneVsOneStrategy, MulticlassOneVsRestStrategy

    feats_train = RealFeatures(fm_train_real)
    feats_test = RealFeatures(fm_test_real)

    labels = MulticlassLabels(label_train_multiclass)

    classifier = LibLinear(L2R_L2LOSS_SVC)
    classifier.set_epsilon(epsilon)
    classifier.set_bias_enabled(True)
    mc_classifier = LinearMulticlassMachine(MulticlassOneVsOneStrategy(),
                                            feats_train, classifier, labels)

    mc_classifier.train()
    label_pred = mc_classifier.apply()
    out = label_pred.get_labels()

    if label_test_multiclass is not None:
        from modshogun import MulticlassAccuracy
        labels_test = MulticlassLabels(label_test_multiclass)
        evaluator = MulticlassAccuracy()
        acc = evaluator.evaluate(label_pred, labels_test)
        print('Accuracy = %.4f' % acc)

    return out
def classifier_multiclasslinearmachine_modular (fm_train_real=traindat,fm_test_real=testdat,label_train_multiclass=label_traindat,label_test_multiclass=label_testdat,width=2.1,C=1,epsilon=1e-5):
	from modshogun import RealFeatures, MulticlassLabels
	from modshogun import LibLinear, L2R_L2LOSS_SVC, LinearMulticlassMachine, MulticlassOneVsOneStrategy, MulticlassOneVsRestStrategy

	feats_train = RealFeatures(fm_train_real)
	feats_test  = RealFeatures(fm_test_real)

	labels = MulticlassLabels(label_train_multiclass)

	classifier = LibLinear(L2R_L2LOSS_SVC)
	classifier.set_epsilon(epsilon)
	classifier.set_bias_enabled(True)
	mc_classifier = LinearMulticlassMachine(MulticlassOneVsOneStrategy(), feats_train, classifier, labels)

	mc_classifier.train()
	label_pred = mc_classifier.apply()
	out = label_pred.get_labels()

	if label_test_multiclass is not None:
		from modshogun import MulticlassAccuracy
		labels_test = MulticlassLabels(label_test_multiclass)
		evaluator = MulticlassAccuracy()
		acc = evaluator.evaluate(label_pred, labels_test)
		print('Accuracy = %.4f' % acc)

	return out
def classifier_multiclass_ecoc_ovr (fm_train_real=traindat,fm_test_real=testdat,label_train_multiclass=label_traindat,label_test_multiclass=label_testdat,lawidth=2.1,C=1,epsilon=1e-5):
	from modshogun import RealFeatures, MulticlassLabels
	from modshogun import LibLinear, L2R_L2LOSS_SVC, LinearMulticlassMachine
	from modshogun import ECOCStrategy, ECOCOVREncoder, ECOCLLBDecoder, MulticlassOneVsRestStrategy

	feats_train = RealFeatures(fm_train_real)
	feats_test  = RealFeatures(fm_test_real)

	labels = MulticlassLabels(label_train_multiclass)

	classifier = LibLinear(L2R_L2LOSS_SVC)
	classifier.set_epsilon(epsilon)
	classifier.set_bias_enabled(True)

	mc_classifier = LinearMulticlassMachine(MulticlassOneVsRestStrategy(), feats_train, classifier, labels)
	mc_classifier.train()
	label_mc = mc_classifier.apply(feats_test)
	out_mc = label_mc.get_labels()

	ecoc_strategy = ECOCStrategy(ECOCOVREncoder(), ECOCLLBDecoder())
	ecoc_classifier = LinearMulticlassMachine(ecoc_strategy, feats_train, classifier, labels)
	ecoc_classifier.train()
	label_ecoc = ecoc_classifier.apply(feats_test)
	out_ecoc = label_ecoc.get_labels()

	n_diff = (out_mc != out_ecoc).sum()
	#if n_diff == 0:
	#	print("Same results for OvR and ECOCOvR")
	#else:
	#	print("Different results for OvR and ECOCOvR (%d out of %d are different)" % (n_diff, len(out_mc)))

	if label_test_multiclass is not None:
		from modshogun import MulticlassAccuracy
		labels_test = MulticlassLabels(label_test_multiclass)
		evaluator = MulticlassAccuracy()
		acc_mc = evaluator.evaluate(label_mc, labels_test)
		acc_ecoc = evaluator.evaluate(label_ecoc, labels_test)
		#print('Normal OVR Accuracy = %.4f' % acc_mc)
		#print('ECOC OVR Accuracy   = %.4f' % acc_ecoc)

	return out_ecoc, out_mc
def classifier_multiclass_ecoc_random (fm_train_real=traindat,fm_test_real=testdat,label_train_multiclass=label_traindat,label_test_multiclass=label_testdat,lawidth=2.1,C=1,epsilon=1e-5):
    from modshogun import RealFeatures, MulticlassLabels
    from modshogun import LibLinear, L2R_L2LOSS_SVC, LinearMulticlassMachine
    from modshogun import ECOCStrategy, ECOCRandomSparseEncoder, ECOCRandomDenseEncoder, ECOCHDDecoder
    from modshogun import Math_init_random;
    Math_init_random(12345);

    feats_train = RealFeatures(fm_train_real)
    feats_test  = RealFeatures(fm_test_real)

    labels = MulticlassLabels(label_train_multiclass)

    classifier = LibLinear(L2R_L2LOSS_SVC)
    classifier.set_epsilon(epsilon)
    classifier.set_bias_enabled(True)

    rnd_dense_strategy = ECOCStrategy(ECOCRandomDenseEncoder(), ECOCHDDecoder())
    rnd_sparse_strategy = ECOCStrategy(ECOCRandomSparseEncoder(), ECOCHDDecoder())

    dense_classifier = LinearMulticlassMachine(rnd_dense_strategy, feats_train, classifier, labels)
    dense_classifier.train()
    label_dense = dense_classifier.apply(feats_test)
    out_dense = label_dense.get_labels()

    sparse_classifier = LinearMulticlassMachine(rnd_sparse_strategy, feats_train, classifier, labels)
    sparse_classifier.train()
    label_sparse = sparse_classifier.apply(feats_test)
    out_sparse = label_sparse.get_labels()

    if label_test_multiclass is not None:
        from modshogun import MulticlassAccuracy
        labels_test = MulticlassLabels(label_test_multiclass)
        evaluator = MulticlassAccuracy()
        acc_dense = evaluator.evaluate(label_dense, labels_test)
        acc_sparse = evaluator.evaluate(label_sparse, labels_test)
        print('Random Dense Accuracy  = %.4f' % acc_dense)
        print('Random Sparse Accuracy = %.4f' % acc_sparse)

    return out_sparse, out_dense
	def run_ecoc(ier, idr):
		encoder = getattr(modshogun, encoders[ier])()
		decoder = getattr(modshogun, decoders[idr])()

		# whether encoder is data dependent
		if hasattr(encoder, 'set_labels'):
		    encoder.set_labels(gnd_train)
		    encoder.set_features(fea_train)

		strategy = ECOCStrategy(encoder, decoder)
		classifier = LinearMulticlassMachine(strategy, fea_train, base_classifier, gnd_train)
		classifier.train()
		label_pred = classifier.apply(fea_test)
		if gnd_test is not None:
		    evaluator = MulticlassAccuracy()
		    acc = evaluator.evaluate(label_pred, gnd_test)
		else:
		    acc = None

		return (classifier.get_num_machines(), acc)
Beispiel #8
0
    def run_ecoc(ier, idr):
        encoder = getattr(Classifier, encoders[ier])()
        decoder = getattr(Classifier, decoders[idr])()

        # whether encoder is data dependent
        if hasattr(encoder, 'set_labels'):
            encoder.set_labels(gnd_train)
            encoder.set_features(fea_train)

        strategy = ECOCStrategy(encoder, decoder)
        classifier = LinearMulticlassMachine(strategy, fea_train,
                                             base_classifier, gnd_train)
        classifier.train()
        label_pred = classifier.apply(fea_test)
        if gnd_test is not None:
            evaluator = MulticlassAccuracy()
            acc = evaluator.evaluate(label_pred, gnd_test)
        else:
            acc = None

        return (classifier.get_num_machines(), acc)