Beispiel #1
0
# Set the device to run on: GPU or CPU
device = torch.device("cuda:0" if (torch.cuda.is_available()) else "cpu")
# Get the 'parameters' dictionary from the loaded file
parameters = model['parameters']
n_samp = parameters['n_smp']

# Initialise the network
netA = Augmenter_mnist(noise_dim=parameters['num_n'],
                       latent_dim=parameters['num_z']).to(device)
# netD = Discriminator().to(device)
# Load the trained augmenter weights
netA.load_state_dict(model['netA'])
# netD.load_state_dict(state_dict['netD'])

dataloader, _ = get_data(dataset='MNIST',
                         batch_size=parameters['batch_size'],
                         file='',
                         n_feature=[])

with torch.no_grad():
    for i, (data, _) in enumerate(dataloader, 0):
        # Get batch size
        if i < 50:
            b_size = parameters['batch_size']
            # Transfer data tensor to GPU/CPU (device)
            real_data = data.to(device)
            augmented_img = []
            err = []

            for arm in range(parameters['n_smp']):
                noise = torch.randn(b_size, parameters['num_n'], device=device)
                noise += 0.1 * torch.sign(noise)
Beispiel #2
0
# Initialise the networks
netG = Generator_facs(latent_dim=parameters['num_z'],
                      input_dim=parameters['n_features']).to(device)
netG.load_state_dict(model_gen['netG'])

netAE = singleAE(input_dim=parameters['n_features'],
                fc_dim=100,
                latent_dim=2,
                p_drop=0.).to(device)
netAE.load_state_dict(torch.load(load_file_ae))

dataloader, dataset = get_data(dataset=parameters['dataset'],
                              batch_size=parameters['batch_size'],
                              file=parameters['dataset_file'],
                              n_feature=parameters['n_features'],
                              training=False,
                              remove_nonneuron=parameters['remove_nonneuron'],
                              remove_CR_Meis2=parameters['remove_CR_Meis2'])

data_real_low = np.zeros((len(dataloader.dataset), 2))
data_gen_low = np.zeros((len(dataloader.dataset), 2))
data_bin_low = np.zeros((len(dataloader.dataset), 2))
data_generate = np.zeros((len(dataloader.dataset), parameters[
    'n_features']))
data_origin = np.zeros((len(dataloader.dataset), parameters['n_features']))
samp_clr = ["" for x in range(len(dataloader.dataset))]
cluster = ["" for x in range(len(dataloader.dataset))]

with torch.no_grad():
    for i, (data, data_bin, labels) in enumerate(dataloader):
Beispiel #3
0
def train_udagan(parameters, device):
    dataloader, _ = get_data(dataset=parameters['dataset'],
                             batch_size=parameters['batch_size'],
                             file=parameters['dataset_file'],
                             n_feature=parameters['n_features'])

    saving_path = os.path.abspath(os.path.join(os.getcwd(), '..'))
    saving_path += '/results/augmenter'

    if parameters['dataset'] == 'MNIST':
        netA = Augmenter_mnist(noise_dim=parameters['num_n'],
                               latent_dim=parameters['num_z']).to(device)
        netD = Discriminator_mnist().to(device)

        saving_path += '/mnist/'

    elif parameters['dataset'] == 'FACS':
        netA = Augmenter_facs(noise_dim=parameters['num_n'],
                              latent_dim=parameters['num_z'],
                              input_dim=parameters['n_features']).to(device)
        netA.apply(weights_init)
        netD = Discriminator_facs(
            input_dim=parameters['n_features']).to(device)
        netD.apply(weights_init)

        saving_path = '/scRNA/'

    if parameters['initial_w']:
        netA.apply(weights_init)
        netD.apply(weights_init)

    # Loss functions
    criterionD = nn.BCELoss()
    mseDist = nn.MSELoss()

    # Set Adam optimiser for discriminator and augmenter
    optimD = optim.Adam([{
        'params': netD.parameters()
    }],
                        lr=parameters['learning_rate'])
    optimA = optim.Adam([{
        'params': netA.parameters()
    }],
                        lr=parameters['learning_rate'])

    real_label = 1
    fake_label = 0
    A_losses = []
    D_losses = []

    print('-' * 50)
    print('Starting the training ...')

    for epoch in range(parameters['num_epochs']):
        epoch_start_time = time.time()
        A_loss_e = 0
        D_loss_e = 0
        recon_loss_e = 0

        if parameters['dataset'] == 'MNIST':
            for i, (data, _) in enumerate(dataloader, 0):
                b_size = parameters['batch_size']
                real_data = data.to(device)

                # Updating the discriminator -----------------------------------
                optimD.zero_grad()
                # Original samples
                label = torch.full((b_size, ), real_label, device=device)
                _, probs_real = netD(real_data)
                loss_real = criterionD(probs_real.view(-1), label)
                loss_real.backward()

                # Augmented samples
                label.fill_(fake_label)
                noise = torch.randn(b_size, parameters['num_n'], device=device)
                noise += 0.1 * torch.sign(noise)
                qz1, fake_data1 = netA(real_data, noise)
                zeros = torch.zeros(b_size, parameters['num_n'], device=device)
                qz2, fake_data2 = netA(real_data, zeros)
                _, probs_fake1 = netD(fake_data1.detach())
                _, probs_fake2 = netD(fake_data2.detach())
                loss_fake = (criterionD(probs_fake1.view(-1), label) + \
                            criterionD(probs_fake2.view(-1), label)) / 2
                loss_fake.backward()
                # Loss value for the discriminator
                D_loss = loss_real + loss_fake
                optimD.step()

                # Updating the augmenter ---------------------------------------
                optimA.zero_grad()
                # Augmented data treated as real data
                noise = torch.randn(b_size, parameters['num_n'], device=device)
                noise += 0.1 * torch.sign(noise)
                qz1, fake_data1 = netA(real_data, noise)
                z1, probs_fake1 = netD(fake_data1)
                z2, probs_fake2 = netD(fake_data2)
                # z0, _ = netD(real_data)
                label.fill_(real_label)
                gen_loss = (criterionD(probs_fake1.view(-1), label) + \
                           criterionD(probs_fake2.view(-1), label)) / 2
                triplet_loss = TripletLoss(real_data.view(b_size, -1),
                                           fake_data2.view(b_size, -1),
                                           fake_data1.view(b_size, -1),
                                           parameters['alpha'], 'BCE')
                recon_loss = criterionD(fake_data2.view(b_size, -1),
                                        real_data.view(b_size, -1))
                # Loss value for the augmenter
                A_loss = parameters['lambda'][0] * gen_loss + \
                         parameters['lambda'][1] * triplet_loss + \
                         parameters['lambda'][2] * KL_dist(qz1, qz2) + \
                         parameters['lambda'][3] * recon_loss

                # parameters['lambda'][2] * mseDist(qz1, qz2)

                A_loss.backward()
                optimA.step()

                A_losses.append(A_loss.data.item())
                D_losses.append(D_loss.data.item())
                A_loss_e += A_loss.data.item()
                D_loss_e += D_loss.data.item()
                recon_loss_e += recon_loss.data.item()

        else:
            for i, (data, data_bin, _) in enumerate(dataloader, 0):
                b_size = parameters['batch_size']
                real_data = data.to(device)
                real_data_bin = data_bin.to(device)

                # Updating the discriminator -----------------------------------
                optimD.zero_grad()
                # Original samples
                label = torch.full((b_size, ), real_label, device=device)
                _, probs_real = netD(real_data_bin)
                loss_real = criterionD(probs_real.view(-1), label)

                if F.relu(loss_real - 0.25) > 0:
                    loss_r = loss_real
                else:
                    loss_r = F.relu(loss_real - 0.25)

                loss_r.backward()

                # Augmented samples
                label.fill_(fake_label)
                noise = torch.randn(b_size, parameters['num_n'], device=device)
                noise += 0.1 * torch.sign(noise)
                qz1, fake_data1 = netA(real_data_bin, noise)
                zeros = torch.zeros(b_size, parameters['num_n'], device=device)
                qz2, fake_data2 = netA(real_data_bin, zeros)
                # binarizing the augmented sample
                fake_data1_bin = fake_data1.clone()
                fake_data2_bin = fake_data2.clone()
                fake_data1_bin[fake_data1_bin > 0] = 1.
                fake_data2_bin[fake_data2_bin > 0] = 1.
                _, probs_fake1 = netD(fake_data1_bin.detach())
                _, probs_fake2 = netD(fake_data2_bin.detach())
                loss_fake = (criterionD(probs_fake1.view(-1), label) + \
                             criterionD(probs_fake2.view(-1), label)) / 2

                if F.relu(loss_fake - 0.25) > 0:
                    loss_f = loss_fake
                else:
                    loss_f = F.relu(loss_fake - 0.25)

                loss_f.backward()
                # Loss value for the discriminator
                D_loss = loss_real + loss_fake
                optimD.step()

                # Updating the augmenter ---------------------------------------
                optimA.zero_grad()
                # Augmented data treated as real data
                z1, probs_fake1 = netD(fake_data1_bin)
                z2, probs_fake2 = netD(fake_data2_bin)
                # z0, _ = netD(real_data)
                label.fill_(real_label)
                gen_loss = (criterionD(probs_fake1.view(-1), label) + \
                            criterionD(probs_fake2.view(-1), label)) / 2
                triplet_loss = TripletLoss(real_data_bin.view(b_size, -1),
                                           fake_data2_bin.view(b_size, -1),
                                           fake_data1_bin.view(b_size, -1),
                                           parameters['alpha'], 'BCE')
                # recon_loss = mseDist(fake_data2.view(b_size, -1),
                #                      real_data.view(b_size, -1))
                recon_loss = F.mse_loss(fake_data2,
                                        real_data,
                                        reduction='mean')
                # Loss value for the augmenter
                A_loss = parameters['lambda'][0] * gen_loss + \
                         parameters['lambda'][1] * triplet_loss + \
                         parameters['lambda'][2] * mseDist(qz1, qz2) + \
                         parameters['lambda'][3] * recon_loss
                A_loss.backward()
                optimA.step()

                A_losses.append(A_loss.data.item())
                D_losses.append(D_loss.data.item())
                A_loss_e += A_loss.data.item()
                D_loss_e += D_loss.data.item()
                recon_loss_e += recon_loss.data.item()

        A_loss_epoch = A_loss_e / (i + 1)
        D_loss_epoch = D_loss_e / (i + 1)
        recon_loss_epoch = recon_loss_e / (i + 1)

        print('=====> Epoch:{}, Augmenter Loss: {:.4f}, Discriminator Loss: {'
              ':.4f}, Recon Loss: {:.4f}, Elapsed Time:{:.2f}'.format(
                  epoch, A_loss_epoch, D_loss_epoch, recon_loss_epoch,
                  time.time() - epoch_start_time))

    print("-" * 50)
    # Save trained models
    if parameters['save']:
        torch.save(
            {
                'netA': netA.state_dict(),
                'netD': netD.state_dict(),
                'optimD': optimD.state_dict(),
                'optimA': optimA.state_dict(),
                'parameters': parameters
            },
            saving_path + 'model_bs_%d_dn_%d_dz_%d_l1_%f_l2_%f_l3_%f_l4_%f' %
            (parameters['batch_size'], parameters['num_n'],
             parameters['num_z'], parameters['lambda'][0], parameters['lambda']
             [1], parameters['lambda'][2], parameters['lambda'][3]))

        # Plot the training losses.
        plt.figure()
        plt.title("Augmenter and Discriminator Loss Values in Training")
        plt.plot(A_losses, label="A")
        plt.plot(D_losses, label="D")
        plt.xlabel("Iterations")
        plt.ylabel("Loss")
        plt.legend()
        plt.savefig(saving_path + 'loss_curve.png')
Beispiel #4
0
n_samp = parameters['n_arm']

# Initialise the networks
netA = Augmenter_facs(noise_dim=parameters['num_n'],
                      latent_dim=parameters['num_z'],
                      input_dim=parameters['n_features']).to(device)
netA.load_state_dict(model_aug['netA'])

netAE = singleAE(input_dim=parameters['n_features'],
                fc_dim=100,
                latent_dim=2,
                p_drop=0.).to(device)
netAE.load_state_dict(torch.load(load_file_ae))

dataloader, dataset = get_data(dataset=parameters['dataset'],
                              batch_size=parameters['batch_size'],
                              file=parameters['dataset_path'],
                              n_feature=parameters['n_features'])
                              # training=False)
                              # remove_nonneuron=parameters['remove_nonneuron'],
                              # remove_CR_Meis2=parameters['remove_CR_Meis2'])

ngen = 200
for arm in range(2): #range(parameters['n_arm']):
    print('-----> sample:{}'.format(arm))

    data_real_low = np.zeros((len(dataloader.dataset), 2))
    data_aug_low = np.zeros((len(dataloader.dataset), 2))
    data_bin_low = np.zeros((len(dataloader.dataset), 2))
    gene_samp_real = np.zeros((len(dataloader.dataset), ngen))
    gene_samp_aug = np.zeros((len(dataloader.dataset), ngen))
    samp_clr = ["" for x in range(len(dataloader.dataset))]
Beispiel #5
0
def train_vaegan(parameters, device):

    dataloader, _ = get_data(dataset=parameters['dataset'],
                             batch_size=parameters['batch_size'],
                             file=parameters['dataset_file'],
                             n_feature=parameters['n_features'],
                             training=True,
                             remove_nonneuron=parameters['remove_nonneuron'],
                             remove_CR_Meis2=parameters['remove_CR_Meis2'])

    saving_path = os.path.abspath(os.path.join(os.getcwd(), '..'))
    saving_path += '/results/generator'

    if parameters['dataset'] == 'MNIST':
        netG = Generator_mnist(latent_dim=parameters['num_z']).to(device)
        netD = Discriminator_mnist().to(device)

        saving_path += '/mnist/'

    elif parameters['dataset'] == 'FACS':
        netG = Generator_facs(latent_dim=parameters['num_z'],
                              input_dim=parameters['n_features']).to(device)
        netG.apply(weights_init)
        netD = Discriminator_facs(
            input_dim=parameters['n_features']).to(device)
        netD.apply(weights_init)

        saving_path += '/scRNA/'

    if parameters['initial_w']:
        netG.apply(weights_init)
        netD.apply(weights_init)

    # Loss functions
    criterionD = nn.BCELoss()
    criterionQ_con = NormalNLLLoss()
    mseDist = nn.MSELoss()

    # Set Adam optimiser for discriminator and augmenter
    optimD = optim.Adam([{
        'params': netD.parameters()
    }],
                        lr=parameters['learning_rate'])
    optimG = optim.Adam([{
        'params': netG.parameters()
    }],
                        lr=parameters['learning_rate'])

    real_label = 1
    fake_label = 0
    G_losses = []
    D_losses = []

    print('-' * 50)
    print('Starting the training ...')

    for epoch in range(parameters['num_epochs']):
        epoch_start_time = time.time()
        G_loss_e = 0
        D_loss_e = 0
        recon_loss_e = 0
        gen_loss_e = 0

        if parameters['dataset'] == 'MNIST':
            for i, (data, _) in enumerate(dataloader, 0):
                b_size = parameters['batch_size']
                real_data = data.to(device)

                # Updating the discriminator -----------------------------------
                optimD.zero_grad()
                # Original samples
                label = torch.full((b_size, ), real_label, device=device)
                _, probs_real = netD(real_data)
                loss_real = criterionD(probs_real.view(-1), label)
                loss_real.backward()

                # Augmented samples
                label.fill_(fake_label)
                _, fake_data = netG(real_data)
                zeros = torch.zeros(b_size, parameters['num_n'], device=device)
                _, probs_fake = netD(fake_data.detach())
                loss_fake = criterionD(probs_fake.view(-1), label)
                loss_fake.backward()
                # Loss value for the discriminator
                D_loss = loss_real + loss_fake
                optimD.step()

                # Updating the augmenter ---------------------------------------
                optimG.zero_grad()
                # Augmented data treated as real data
                z, probs_fake = netD(fake_data)
                label.fill_(real_label)
                gen_loss = criterionD(probs_fake.view(-1), label)
                recon_loss = criterionD(fake_data.view(b_size, -1),
                                        real_data.view(b_size, -1))
                # Loss value for the augmenter
                G_loss = parameters['lambda'][0] * gen_loss + \
                         parameters['lambda'][3] * recon_loss
                G_loss.backward()
                optimG.step()

                G_losses.append(G_loss.data.item())
                D_losses.append(D_loss.data.item())
                G_loss_e += G_loss.data.item()
                D_loss_e += D_loss.data.item()
                recon_loss_e += recon_loss.data.item()
                gen_loss_e += gen_loss.data.item()

        else:
            for i, (data, data_bin, _) in enumerate(dataloader, 0):
                b_size = parameters['batch_size']
                real_data = data.to(device)
                real_data_bin = data_bin.to(device)

                # Updating the discriminator -----------------------------------
                optimD.zero_grad()
                # Original samples
                label = torch.full((b_size, ), real_label, device=device)
                _, probs_real = netD(real_data_bin)
                loss_real = criterionD(probs_real.view(-1), label)

                if F.relu(loss_real - np.log(2) / 2) > 0:
                    loss_real.backward()
                    optim_D = True
                else:
                    optim_D = False

                # Augmented samples
                label.fill_(fake_label)
                _, fake_data = netG(real_data_bin)
                # binarizing the augmented sample
                fake_data_bin = fake_data.clone()
                fake_data_bin[fake_data_bin > 0] = 1.
                _, probs_fake = netD(fake_data_bin.detach())
                loss_fake = criterionD(probs_fake.view(-1), label)

                if F.relu(loss_fake - np.log(2) / 2) > 0:
                    loss_fake.backward()
                    optim_D = True

                # Loss value for the discriminator
                D_loss = loss_real + loss_fake

                if optim_D:
                    optimD.step()

                # Updating the augmenter ---------------------------------------
                optimG.zero_grad()
                # Augmented data treated as real data
                _, probs_fake = netD(fake_data_bin)
                label.fill_(real_label)
                gen_loss = criterionD(probs_fake.view(-1), label)
                recon_loss = F.mse_loss(fake_data, real_data, reduction='mean')
                # Loss value for the augmenter
                G_loss = parameters['lambda'][0] * gen_loss + \
                         parameters['lambda'][3] * recon_loss
                G_loss.backward()
                optimG.step()

                G_losses.append(G_loss.data.item())
                D_losses.append(D_loss.data.item())
                G_loss_e += G_loss.data.item()
                D_loss_e += D_loss.data.item()
                recon_loss_e += recon_loss.data.item()
                gen_loss_e += gen_loss.data.item()

        G_loss_epoch = G_loss_e / (i + 1)
        D_loss_epoch = D_loss_e / (i + 1)
        recon_loss_epoch = recon_loss_e / (i + 1)
        gen_loss_epoch = gen_loss_e / (i + 1)

        print('=====> Epoch:{}, Generator Loss: {:.4f}, Discriminator Loss: {'
              ':.4f}, Recon Loss: {:.4f}, Gen Loss: {:.4f}, Elapsed Time:{'
              ':.2f}'.format(epoch, G_loss_epoch, D_loss_epoch,
                             recon_loss_epoch, gen_loss_epoch,
                             time.time() - epoch_start_time))

    print("-" * 50)
    # Save trained models
    if parameters['save']:
        torch.save(
            {
                'netG': netG.state_dict(),
                'netD': netD.state_dict(),
                'optimD': optimD.state_dict(),
                'optimG': optimG.state_dict(),
                'parameters': parameters
            }, saving_path + 'modelG_bs_%d_dn_%d_dz_%d' %
            (parameters['batch_size'], parameters['num_z'],
             parameters['num_epochs']))

        # Plot the training losses.
        plt.figure()
        plt.title("Generator and Discriminator Loss Values in Training")
        plt.plot(G_losses, label="G")
        plt.plot(D_losses, label="D")
        plt.xlabel("Iterations")
        plt.ylabel("Loss")
        plt.legend()
        plt.savefig(saving_path + 'loss_curve_g.png')