Beispiel #1
0
def run_task1(train_samples,
              test_samples,
              learning_rate,
              epochs,
              print_option='default'):

    spot_0 = time.time()
    train_X, train_y = create_samples_mul(train_samples)
    test_X, test_y = create_samples_mul(test_samples)
    train_X, train_y = train_X.reshape(-1, 1, 1,
                                       2), train_y.reshape(-1, 1, 1, 1)
    test_X, test_y = test_X.reshape(-1, 1, 1, 2), test_y.reshape(-1, 1, 1, 1)

    # make model
    spot_1 = time.time()
    model = nn.Network(layers=[
        nn.Layer(INPUT_DIM=(1, 1, 2),
                 kernel=(1, 1, 2, 1),
                 stride=(1, 1),
                 OUTPUT_DIM=(1, 1, 1)),
    ])
    if print_option != 'nothing':
        print('train_samples : ', train_samples, train_X.shape)
        print('test_samples  : ', test_samples, train_y.shape)
        print('epochs        : ', epochs)
        print('learning_rate : ', learning_rate)
        model.print_layers()

    spot_2 = time.time()
    for epoch in range(epochs):
        model.train(train_X, train_y, learning_rate)

        if print_option == 'progress':
            print('\nepoch #' + str(epoch + 1))
            print('w :' + str(model.layers[0].w.reshape((1, 2))))
            print('b : ' + str(model.layers[0].b))

    spot_3 = time.time()
    test_pred = model.predict(test_X)

    spot_4 = time.time()
    train_acc = 100 * np.mean(
        model.predict(train_X).astype(bool) == train_y.astype(bool))
    test_acc = 100 * np.mean(test_pred.astype(bool) == test_y.astype(bool))

    return {
        'w0': model.layers[0].w.reshape((1, 2)),
        'b0': model.layers[0].b,
        'train_loss': model.loss(train_X, train_y),
        'test_loss': model.loss(test_X, test_y),
        'train_acc': train_acc,
        'test_acc': test_acc,
        'time_gen_data': spot_1 - spot_0,
        'time_gen_network': spot_2 - spot_1,
        'time_train': spot_3 - spot_2,
        'time_predict': spot_4 - spot_3,
    }
Beispiel #2
0
def run_practice_2(train_samples,
                   test_samples,
                   learning_rate,
                   epochs,
                   print_option='default'):

    train_X, train_y = create_samples_sum(train_samples)
    test_X, test_y = create_samples_sum(test_samples)

    train_X, train_y = train_X.reshape(-1, 1, 1,
                                       2), train_y.reshape(-1, 1, 1, 1)
    test_X, test_y = test_X.reshape(-1, 1, 1, 2), test_y.reshape(-1, 1, 1, 1)

    # make model
    model = nn.Network(layers=[
        nn.Layer(INPUT_DIM=(1, 1, 2),
                 kernel=(1, 1, 2, 1),
                 stride=(1, 1),
                 OUTPUT_DIM=(1, 1, 1)),
    ])
    if print_option != 'nothing':
        print('train_samples : ', train_samples, train_X.shape)
        print('test_samples  : ', test_samples, train_y.shape)
        print('epochs        : ', epochs)
        print('learning_rate : ', learning_rate)
        model.print_layers()

    for epoch in range(epochs):
        model.train(train_X, train_y, learning_rate)

        if print_option == 'progress':
            print('\nepoch #' + str(epoch + 1))
            print('w :' + str(model.layers[0].w.reshape((1, 2))))
            print('b : ' + str(model.layers[0].b))

    return {
        'w':
        model.layers[0].w.reshape((1, 2)),
        'b':
        model.layers[0].b,
        'train_loss':
        model.loss(train_X, train_y),
        'test_loss':
        model.loss(test_X, test_y),
        'train_acc':
        100 *
        np.mean(model.predict(train_X).astype(bool) == train_y.astype(bool)),
        'test_acc':
        100 *
        np.mean(model.predict(test_X).astype(bool) == test_y.astype(bool))
    }