Beispiel #1
0




#average map

consumption_var = np.sum(np.diff(consumption, axis = 1),axis = 1)
consumption_var = ma.masked_where(isnan(consumption_var) == 1, consumption_var)
consumption_ref = np.mean(consumption, axis = 1)
consumption_ref = ma.masked_where(isnan(consumption_ref) == 1, consumption_ref)
consumption_change = consumption_var / consumption_ref
np.average(consumption_change, weights = weights)
np.average(consumption_change[mask==0], weights = weights[mask==0])

map_consumption = module.make_map(consumption_change, filter_array, idlist, spatial_unit)
module.new_map_netcdf(Input.outputDir + '/'+ 'map_consumption_change_1960to2010', map_consumption, 'consumption_change', '%', latitude, longitude)
plt.imshow(map_consumption)
plt.hist(consumption_change)
np.max(consumption_change)
np.min(consumption_change)









"""
33. サ変名詞
サ変接続の名詞をすべて抽出せよ.
"""

from module import make_map

lines = make_map()
st = set()
for line in lines:
    for data in line:
        if data["pos"] == "名詞" and data["pos1"] == "サ変接続":
            st.add(data["base"])

print(st)
Beispiel #3
0
"""
34. 「AのB」
2つの名詞が「の」で連結されている名詞句を抽出せよ.
"""

from module import make_map

lines = make_map()
st = set()
for line in make_map():
    for i in range(len(line)):
        if line[i]["surface"] == "の":
            if i == 0 or i == len(line) - 1:
                continue
            if line[i - 1]["pos"] == "名詞" and line[i + 1]["pos"] == "名詞":
                st.add(line[i - 1]["surface"] + line[i]["surface"] + line[i + 1]["surface"])
print(st)