Beispiel #1
0
 def __init__(self, pipeline, version="2"):
     super(RunVA, self).__init__()
     self._pipeline = pipeline
     self._version = version
     self._db = DBIngest(host=dbhost, index="algorithms", office=office)
     self._maincontext = GLib.MainLoop().get_context()
     self._stop = None
     ModelManager.load_config("/home/models", {})
     PipelineManager.load_config("/home/pipelines", 1)
Beispiel #2
0
def main(options):
    PipelineManager.load_config(
        os.path.join(CONFIG_PATH, options.pipeline_dir), MAX_RUNNING_PIPELINES)
    ModelManager.load_config(os.path.join(CONFIG_PATH, options.model_dir))

    asyncio.set_event_loop(asyncio.new_event_loop())

    app = connexion.App(__name__, specification_dir='./openapi/')
    app.app.json_encoder = encoder.JSONEncoder
    app.add_api('openapi.yaml', arguments={'title': 'Video Analytics API'})
    logger.info("Starting Tornado Server on port: {p}".format(p=options.port))
    app.run(server='tornado', port=options.port)
def main(options):

    PipelineManager.load_config(
        os.path.join(options.config_path, options.pipeline_dir),
        options.max_running_pipelines)
    ModelManager.load_config(
        os.path.join(options.config_path, options.model_dir),
        parse_network_preference(options))
    app = connexion.App(__name__, specification_dir='./openapi/')
    app.app.json_encoder = encoder.JSONEncoder
    app.add_api('openapi.yaml',
                arguments={'title': 'Video Analytics Serving API'})
    logger.info("Starting Tornado Server on port: {p}".format(p=options.port))
    app.run(server='tornado', port=options.port)
    def test_get_loaded_models_empty(self):

        ModelManager.models = None

        expected_result = []
        result = ModelManager.get_loaded_models()

        self.assertEqual(result, expected_result)
def models_get():  # noqa: E501
    """models_get

    Return supported models # noqa: E501


    :rtype: List[ModelVersion]
    """
    logger.debug("GET on /models")
    return ModelManager.get_loaded_models()
 def _add_default_models(self):
     gva_elements = [
         e for e in self.pipeline.iterate_elements()
         if (e.__gtype__.name in self.GVA_INFERENCE_ELEMENT_TYPES)
     ]
     for e in gva_elements:
         network = ModelManager.get_default_network_for_device(
             e.get_property("device"), e.get_property("model"))
         logger.debug("Setting model to {} for element {}".format(
             network, e.get_name()))
         e.set_property("model", network)
Beispiel #7
0
def models_get():  # noqa: E501
    """models_get

    Return supported models # noqa: E501


    :rtype: List[ModelVersion]
    """
    try:
        logger.debug("GET on /models")
        return ModelManager.get_loaded_models()
    except Exception as e:
        logger.error('pipelines_name_version_get '+e)
        return ('Unexpected error', HTTPStatus.INTERNAL_SERVER_ERROR)
 def _add_default_models(self,args):
     vf_index = args.index('-vf') if ('-vf' in args) else None
     if (vf_index==None):
         return
     filters = args[vf_index+1].split(',')
     new_filters=[]
     for _filter in filters:
         filter_params = self._get_filter_params(_filter)
         if ( (filter_params['type'] in FFmpegPipeline.GVA_INFERENCE_FILTER_TYPES)):
             device='CPU'
             if ('device' in filter_params):
                 device = FFmpegPipeline.DEVICEID_MAP[int(filter_params['device'])]
             filter_params['model'] = ModelManager.get_default_network_for_device(device,filter_params['model'])
             new_filters.append(self._join_filter_params(filter_params))
         else:
             new_filters.append(_filter)
     args[vf_index+1] =','.join(new_filters)
 def _add_default_models(self, args):
     vf_index = args.index('-vf') if ('-vf' in args) else None
     if (vf_index == None):
         return
     filters = args[vf_index + 1].split(',')
     new_filters = []
     for _filter in filters:
         filter_params = self._get_filter_params(_filter)
         if ((filter_params['type']
              in FFmpegPipeline.GVA_INFERENCE_FILTER_TYPES)
                 and ("VA_DEVICE_DEFAULT" in filter_params['model'])):
             device = "CPU"
             if ("device" in filter_params):
                 device = filter_params["device"]
                 if isinstance(filter_params['device'], int):
                     device = FFmpegPipeline.DEVICEID_MAP[int(
                         filter_params['device'])]
             filter_params[
                 "model"] = ModelManager.get_default_network_for_device(
                     device, filter_params["model"])
             new_filters.append(self._join_filter_params(filter_params))
         elif (filter_params['type'] == "metaconvert"):
             # use the file to send the tags info to ffmpeg
             tmp_file = "/tmp/timestamp"
             if "tags" in self.request:
                 try:
                     tmp_tags = ""
                     for key in self.request["tags"]:
                         #filter_params["tags"] = "{\"%s\":%s}" % (key, self.request["tags"][key])
                         tmp_tags = "{\"%s\":%s}" % (
                             key, self.request["tags"][key])
                     with open(tmp_file, 'w') as f:
                         f.write(tmp_tags)
                 except Exception:
                     logger.error("Error adding tags")
             source_uri = "source=" + "'" + self.request["source"][
                 "uri"].replace(":", "\\:") + "'"
             filter_params_str = self._join_filter_params(
                 filter_params).replace("source=NULL", source_uri)
             filter_params_str = filter_params_str.replace(
                 "tags=NULL", "tags=file|" + tmp_file)
             new_filters.append(filter_params_str)
         else:
             new_filters.append(_filter)
     args[vf_index + 1] = ','.join(new_filters)
    def test_load_config(self):
        ModelManager.load_config("../models")

        print(ModelManager.models)
Beispiel #11
0
 def __init__(self):
     super(RunVA, self).__init__()
     ModelManager.load_config("/home/models", {})
     PipelineManager.load_config("/home/pipelines", 1)
     self._maincontext = GLib.MainLoop().get_context()
     GLib.timeout_add(1000, self._noop)