Beispiel #1
0
 def _process_files(paths, **params_decode):
     paths = [paths] if not isinstance(paths, list) else paths
     import modules.data.decode_tf as decode_tf
     import tensorflow as tf
     # IMPROVE: accept different kinds of input data
     data_list = []
     for path in paths:
         data_list.append(decode_tf.decode_image_file(tf.convert_to_tensor(path), **params_decode))
     data_t = tf.data.Dataset.from_tensor_slices(data_list)
     return data_t
Beispiel #2
0
 def wrapper_decode_image_file(file_name_t, folder_id_t):
     # NOTE: cannot use ordinary string operations here, use Tensor instead
     # path = osp.join(root_path, folder_name, file_name)
     folder_name_t = vocabulary_t[folder_id_t]
     path_t = tf.strings.join([root_path_t, folder_name_t, file_name_t],
                              '/')
     # Updating: consider use **decode_x in map_func
     # return decode_tf.decode_image_file(
     #             path_t, encoding=None, colormode=colormode,
     #             resize_w=resize_w, resize_h=resize_h,
     #             normalize=normalize, preserve_aspect_ratio=preserve_aspect_ratio
     # )
     return decode_tf.decode_image_file(path_t, **params_decode)
 def map_path_to_image(path_t):
     return decode_tf.decode_image_file(path_t, **params_decode)