Beispiel #1
0
    def __init__(self, cfg, time_period=0, models=NAMES_UA):
        # logging
        log = gen.getLogger(gen.getClassName(self))
        log.info("start creating ua ensemble monthly average")

        # aos
        obj = aos.DataObject(('ua_ens_month_avg', time_period, models))
        if obj.load():
            obj.copy(self)
            return (None)

        # init
        self._time_period = time_period
        self._models = models
        self.cfg = dict(cfg)

        # create list of time_avg_lat_lon 2D-fields
        ensemble_time_avg_lat_lon = []
        if time_period == '1979-2005':
            directory_prefix = pl.Path(
                self.cfg['data_folders']['historical']).joinpath('ua/mon')
        elif time_period == '2070-2099':
            directory_prefix = pl.Path(
                self.cfg['data_folders']['rcp85']).joinpath('ua/mon')
        else:
            raise Exception("ua_ens_avg: time period '%s' not known" %
                            time_period)

        print("Load data from time period %s" % time_period)
        log.info("ua_ens_month_avg: Load data from time period %s" %
                 time_period)
        for name in self._models:
            print("Loading %s from file" % name)
            log.info("Loading %s from file" % name)
            directory = directory_prefix.joinpath(name).joinpath('r1i1p1')
            tall = time_avg_month_lat_lon_dir(directory,
                                              time_period=time_period)
            ensemble_time_avg_lat_lon += [tall]

        # check consistancy of grids in the ensemble of time_avg_lat_lon 2D-fields and store grid
        tall_0 = ensemble_time_avg_lat_lon[0]
        for tall in ensemble_time_avg_lat_lon:
            if not tall_0.grid_equal(tall):
                raise Exception(
                    "ua_ens_month_avg: error, grids are not consistent")
        self.points = tall_0.points
        self.area = tall_0.area

        # put ensemble into a 3D array with shape (n_points, 24, n_models)
        tall_0 = ensemble_time_avg_lat_lon[0]
        n_points = tall_0.data.shape[0]
        self.n_models = len(ensemble_time_avg_lat_lon)
        self.data = np.zeros((n_points, 24, self.n_models))
        for tall, model in zip(ensemble_time_avg_lat_lon,
                               range(self.n_models)):
            self.data[:, :, model] = tall.data

        # aos
        obj.save(self)
Beispiel #2
0
    def __init__(self, data):
        # aos
        obj = aos.DataObject(('ua', data))
        if obj.load():
            obj.copy(self)
            return (None)

        # logging
        log = gen.getLogger(gen.getClassName(self))
        log.info("creating class")

        if not data:
            raise Exception("ua: Initialization error, provide data")
        if data[0] == 'file':
            self._init_ua_from_file(data[1])
        else:
            raise Exception("ua: Initialization error, unknow mode")

        # aos
        obj.save(self)
Beispiel #3
0
    def _init_ua_from_file(self, ua_file):
        # logging
        log = gen.getLogger(gen.getClassName(self))
        log.info("loading data from file '%s'" % ua_file)

        if not ua_file.exists():
            log.critical("Initialization error, file '%s' not found" % ua_file)
            raise Exception("ua: Initialization error, file '%s' not found" %
                            ua_file)

        self._ua_file = ua_file
        g = xr.open_dataset(self._ua_file)
        self.plev_to_extract = 70000

        # store grid
        self.x = g['lon'].values.reshape(-1)
        self.y = g['lat'].values.reshape(-1)
        if 'plev' in g:
            self.plev = g['plev'].values.reshape(-1)
        elif 'lev' in g:
            self.plev = g['lev'].values.reshape(-1)
        else:
            log.critical("Initialization error, cannot read 'plev'")
            raise Exception("ua: Initialization error, cannot read 'plev'")

        log.info("plev: %s" % str(self.plev))
        idc = np.where(self.plev == self.plev_to_extract)[0]
        if idc.shape[0] != 1:
            log.critical("ua: Initialization error: cannot find plevel %f" %
                         self.plev_to_extract)
            raise Exception("ua: Initialization error: cannot find plevel %f" %
                            self.plev_to_extract)
        self.plev_idx = idc[0]
        self.t = time_datetime64_to_month(g['time'].values)
        self.nx = self.x.shape[0]
        self.ny = self.y.shape[0]
        self.nt = self.t.shape[0]

        # store data
        self.data = g[
            'ua'].values[:, self.plev_idx, :, :]  # array for (time, lat, lon)
Beispiel #4
0
    def __init__(self, x):
        self.log = gen.getLogger(gen.getClassName(self))
        self.X = None
        self._x_ = x
        self._hash_ = hsh(x)
        self._file_ = "%s/data-%s" % (path, self._hash_)
        self._file_exists_ = os.path.isfile(self._file_)

        if verbose == 2:
            print(headline)
            print("auto=%d" % auto)
            print("action: init")
            print(format_list(self._x_))
            print("file exists: %d" % self._file_exists_)
            print("file=%s" % self._file_)
            print(footline)

        if 'PYTHONHASHSEED' not in os.environ.keys():
            self.log.warning(
                '`PYTHONHASHSEED` environmental variable not set.' +
                ' This will prevent `aos.DataObject` from identifying' +
                ' existing files as each run will have new seeds.')
Beispiel #5
0
    def __init__(self, directory, time_period=0):
        # logging
        log = gen.getLogger(gen.getClassName(self))
        log.info("starting")

        # aos
        obj = aos.DataObject(('time_avg_lat_lon_dir', directory, time_period))
        if obj.load():
            obj.copy(self)
            log.info("loaded")
            return (None)

        ua_list = []
        for f in directory.iterdir():
            if '_reg.nc' in str(f):
                gen.print_truncate("  Loading file %s" % f)
                ua_list = ua_list + [ua(['file', directory.joinpath(f)])]
        super(time_avg_lat_lon_dir, self).__init__(['ua list', ua_list],
                                                   time_period=time_period)

        # aos
        obj.save(self)
        log.info("created")
Beispiel #6
0
    def __init__(self, data, time_period=0):
        # logging
        log = gen.getLogger(gen.getClassName(self))
        log.info("starting")

        # input
        if time_period == '1971-2000':
            self._time_period = '1971-2000'
            self._n_month = 360
            self._month_offset = 0
        elif time_period == '2071-2100':
            self._time_period = '2071-2100'
            self._n_month = 360
            self._month_offset = 100 * 12
        elif time_period == '1979-2005':
            self._time_period = '1979-2005'
            self._n_month = 27 * 12
            self._month_offset = 8 * 12
        elif time_period == '2070-2099':
            self._time_period = '2070-2099'
            self._n_month = 360
            self._month_offset = 99 * 12
        else:
            log.critical("Initialization error, provide time_period")
            raise Exception(
                "time_avg_month_lat_lon: Initialization error, provide time_period"
            )
        if not data:
            log.critical("Initialization error, provide data")
            raise Exception(
                "time_avg_month_lat_lon: Initialization error, provide data")

        # initialize
        log.info("initializing from %s" % data[0])
        values = None
        if data[0] == 'ua list':
            # initialize from list
            for list_item in data[1]:
                if values is None:
                    values = array_create_unitialized(
                        (self._n_month, list_item.ny, list_item.nx))
                    self._x = list_item.x
                    self._y = list_item.y
                if not data[1][0].grid_equal(list_item):
                    log.critical("initialization error, grid mismatch")
                    raise Exception(
                        "time_avg_month_lat_lon: Initialization error, grid mismatch"
                    )
                for t_idx in range(list_item.nt):
                    month = list_item.t[t_idx] - self._month_offset
                    if (month < 0) or (month >= self._n_month):
                        continue
                    if not array_is_completely_uninitialized(values[month]):
                        log.error("array not completely uninitialized")
                        print(
                            "WARNING: time_avg_month_lat_lon: array not completely uninitialized"
                        )
                    values[month] = list_item.data[t_idx]
        else:
            log.critical("initialization mode '%s' not recognized" % data[0])
            raise Exception(
                "time_avg_month_lat_lon: initialization mode '%s' not recognized"
                % data[0])

        if not array_is_initialized(values):
            log.critical(
                "Initialization error, array not completely initialized from list %s"
                % str(data[1]))
            raise Exception(
                "time_avg_lat_lon: Initialization error, array not completely initialized"
            )

        # create month-averages for 24 month
        # first 12 month: year 0 ... n-1
        # second 12 month: year 1 ... n
        n_month = values.shape[0]
        n_years = int(n_month / 12)
        assert (12 * n_years == n_month)
        values = values.reshape(n_years, 12, 180, 360)
        values_1 = np.mean(values[:-1], axis=0)
        values_2 = np.mean(values[1:], axis=0)
        values = np.vstack((values_1, values_2))

        # output array
        nx = self._x.shape[0]
        ny = self._y.shape[0]
        self.points = np.zeros((nx * ny, 2))
        self.data = np.zeros((nx * ny, 24))
        self.area = np.zeros((nx * ny, 1))
        n = 0
        for i in range(nx):
            for j in range(ny):
                self.points[n, 0] = self._x[i]
                self.points[n, 1] = self._y[j]
                self.data[n, :] = values[:, j, i]
                self.area[n, 0] = np.cos(np.pi / 180 * self._y[j]) * np.sin(
                    np.pi / 360) / 360
                n += 1

        log.info("finished loading data from list")
Beispiel #7
0
    def __init__(self, e, n=360, max_length=360, min_length=30):
        """Class initialization

        Parameters
        ----------
        e : class
            Evaluation class for a single evaluation to run
        n : int, optional
            Range of starting degrees [0, 360].
        max_length : int, optional
            Maximum size of averaging window [1, 360).
        min_length : int, optional
            Minumum size of averaging window [1, 359).

        Returns
        -------
        TYPE
            Description
        """
        # logging
        log = gen.getLogger(gen.getClassName(self))
        log.info("start evaluating all [JJA]")

        # Error files
        self.minima_error_file = 'min_max_error.csv'
        self.nan_error_file = 'nan_error.csv'

        # aos
        obj = aos.DataObject(('EvaluateAll [JJA]', n))
        if obj.load():
            obj.copy(self)
            return (None)

        # prepare evaluate
        self.n = n
        self.min_length = min_length
        self.max_length = max_length

        x = np.arange(self.n)
        y = np.arange(self.min_length, self.max_length + 1)
        xx, yy = np.meshgrid(x, y)
        individuals = np.transpose(
            np.hstack((xx.reshape(-1, 1), yy.reshape(-1, 1))))

        # evaluate
        self.ret = e(individuals)

        # Process / convert results
        self.start = individuals[0, :].reshape(-1, 1)
        self.length = individuals[1, :].reshape(-1, 1)
        self.fitness = self.ret[0, :].reshape(-1, 1)
        self.result = pd.DataFrame(
            {
                'start': self.start.ravel(),
                'length': self.length.ravel(),
                'fitness': self.fitness.ravel()
            },
            index=np.arange(len(self.fitness.ravel())))

        # Longitudes in input goes from -179.5 to 179.5.
        # Here we convert from integer degree (offset) to the proper longitude value.
        self.result['start'] -= 179.5
        self.save_errors(e.f.n_models)

        # aos
        obj.save(self)