def train(images_folder,
          num_refinement_stages,
          base_lr,
          batch_size,
          batches_per_iter,
          num_workers,
          checkpoint_path,
          weights_only,
          from_mobilenet,
          checkpoints_folder,
          log_after,
          checkpoint_after,
          num_kps,
          finetune=False):
    net = SinglePersonPoseEstimationWithMobileNet(
        num_refinement_stages=num_refinement_stages,
        num_heatmaps=num_kps + 1).cuda()
    stride = 8
    sigma = 7
    # num of kps is default 16 ,+bg=17
    # the img size is arbitrary , flip may not need
    data_flag = "real" if images_folder.split(
        "/")[-1] == "data_lip" else "anime"
    train_log = get_logger(checkpoints_folder, cmd_stream=True)

    if data_flag == "real":
        dataset = LipTrainDataset(images_folder,
                                  stride,
                                  sigma,
                                  transform=transforms.Compose([
                                      SinglePersonBodyMasking(),
                                      ChannelPermutation(),
                                      SinglePersonRotate(pad=(128, 128, 128),
                                                         max_rotate_degree=40),
                                      SinglePersonCropPad(pad=(128, 128, 128),
                                                          crop_x=256,
                                                          crop_y=256),
                                      SinglePersonFlip()
                                  ]))
    else:
        dataset = AnimeTrainDataset(
            images_folder,
            stride,
            sigma,
            transform=transforms.Compose([
                SinglePersonBodyMasking(),
                ChannelPermutation(),
                SinglePersonRotate(pad=(128, 128, 128), max_rotate_degree=40),
                SinglePersonCropPad(pad=(128, 128, 128),
                                    crop_x=256,
                                    crop_y=256)
            ]))
    # b=32 default
    train_loader = DataLoader(dataset,
                              batch_size=batch_size,
                              shuffle=True,
                              num_workers=num_workers)

    backbone_p = [{
        'params': get_parameters_conv(net.model, 'weight')
    }, {
        'params': get_parameters_conv_depthwise(net.model, 'weight'),
        'weight_decay': 0
    }, {
        'params': get_parameters_bn(net.model, 'weight'),
        'weight_decay': 0
    }, {
        'params': get_parameters_bn(net.model, 'bias'),
        'lr': base_lr * 2,
        'weight_decay': 0
    }]
    cpm_p = [{
        'params': get_parameters_conv(net.cpm, 'weight'),
        'lr': base_lr
    }, {
        'params': get_parameters_conv(net.cpm, 'bias'),
        'lr': base_lr * 2,
        'weight_decay': 0
    }, {
        'params': get_parameters_conv_depthwise(net.cpm, 'weight'),
        'weight_decay': 0
    }]
    initial_p = [{
        'params': get_parameters_conv(net.initial_stage, 'weight'),
        'lr': base_lr
    }, {
        'params': get_parameters_conv(net.initial_stage, 'bias'),
        'lr': base_lr * 2,
        'weight_decay': 0
    }, {
        'params': get_parameters_bn(net.initial_stage, 'weight'),
        'weight_decay': 0
    }, {
        'params': get_parameters_bn(net.initial_stage, 'bias'),
        'lr': base_lr * 2,
        'weight_decay': 0
    }]
    refine_p = [{
        'params': get_parameters_conv(net.refinement_stages, 'weight'),
        'lr': base_lr * 4
    }, {
        'params': get_parameters_conv(net.refinement_stages, 'bias'),
        'lr': base_lr * 8,
        'weight_decay': 0
    }, {
        'params': get_parameters_bn(net.refinement_stages, 'weight'),
        'weight_decay': 0
    }, {
        'params': get_parameters_bn(net.refinement_stages, 'bias'),
        'lr': base_lr * 2,
        'weight_decay': 0
    }]
    opt_p = []
    #TODO modify params needed update above and change the model structure.
    if not finetune:
        opt_p += backbone_p
    opt_p += cpm_p
    opt_p += initial_p
    opt_p += refine_p
    optimizer = optim.Adam(opt_p, lr=base_lr, weight_decay=5e-4)

    num_iter = 0
    current_epoch = 0
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                     factor=0.1,
                                                     patience=5,
                                                     threshold=1e-2,
                                                     verbose=True)
    if checkpoint_path:
        checkpoint = torch.load(checkpoint_path)

        if from_mobilenet:
            load_from_mobilenet(net, checkpoint)
        else:
            load_state(net, checkpoint)
            if not weights_only:
                optimizer.load_state_dict(checkpoint['optimizer'])
                scheduler.load_state_dict(checkpoint['scheduler'])
                num_iter = checkpoint['iter']
                num_iter = num_iter // log_after * log_after  # round iterations, to print proper loss when resuming
                current_epoch = checkpoint['current_epoch'] + 1

    net = DataParallel(net, device_ids=[0])
    net.train()
    for epochId in range(current_epoch, 100):
        train_log.debug('Epoch: {}'.format(epochId))
        net.train()
        total_losses = [0] * (num_refinement_stages + 1
                              )  # heatmaps loss per stage
        batch_per_iter_idx = 0
        for batch_data in train_loader:
            if batch_per_iter_idx == 0:
                optimizer.zero_grad()

            images = batch_data['image'].cuda()
            keypoint_maps = batch_data['keypoint_maps'].cuda()

            stages_output = net(images)

            losses = []
            # guess to update the init stage + refinement stages
            for loss_idx in range(len(total_losses)):
                losses.append(
                    l2_loss(stages_output[loss_idx], keypoint_maps,
                            images.shape[0]))
                total_losses[loss_idx] += losses[-1].item() / batches_per_iter

            loss = losses[0]
            for loss_idx in range(1, len(losses)):
                loss += losses[loss_idx]
            loss /= batches_per_iter
            loss.backward()
            batch_per_iter_idx += 1
            if batch_per_iter_idx == batches_per_iter:
                optimizer.step()
                batch_per_iter_idx = 0
                num_iter += 1
            else:
                continue
            #per 100 iter
            if num_iter % log_after == 0:
                train_log.debug('Iter: {}'.format(num_iter))
                for loss_idx in range(len(total_losses)):
                    train_log.debug('\n'.join([
                        'stage{}_heatmaps_loss: {}'
                    ]).format(loss_idx + 1,
                              total_losses[loss_idx] / log_after))
                for loss_idx in range(len(total_losses)):
                    total_losses[loss_idx] = 0

        snapshot_name = '{}/checkpoint_last_epoch.pth'.format(
            checkpoints_folder)
        torch.save(
            {
                'state_dict': net.module.state_dict(),
                'optimizer': optimizer.state_dict(),
                'scheduler': scheduler.state_dict(),
                'iter': num_iter,
                'current_epoch': epochId
            }, snapshot_name)
        if (epochId + 1) % checkpoint_after == 0:
            snapshot_name = '{}/checkpoint_epoch_{}.pth'.format(
                checkpoints_folder, epochId)
            torch.save(
                {
                    'state_dict': net.module.state_dict(),
                    'optimizer': optimizer.state_dict(),
                    'scheduler': scheduler.state_dict(),
                    'iter': num_iter,
                    'current_epoch': epochId
                }, snapshot_name)
        train_log.debug('Validation...')
        net.eval()
        eval_num = 1000
        if data_flag == "real":
            val_dataset = LipValDataset(images_folder, eval_num)
        else:
            val_dataset = AnimeValDataset(images_folder, eval_num)
        predictions_name = '{}/val_results.csv'.format(checkpoints_folder)
        evaluate(val_dataset, predictions_name, net, num_kps=num_kps)
        pck = calc_pckh(val_dataset.labels_file_path,
                        predictions_name,
                        eval_num=eval_num)

        val_loss = 100 - pck[-1][-1]  # 100 - avg_pckh
        train_log.debug('Val loss: {}'.format(val_loss))
        scheduler.step(val_loss, epochId)
def train(prepared_train_labels, train_images_folder, num_refinement_stages,
          base_lr, batch_size, batches_per_iter, num_workers, checkpoint_path,
          weights_only, from_mobilenet, checkpoints_folder, log_after,
          val_labels, val_images_folder, val_output_name, checkpoint_after,
          val_after):
    net = PoseEstimationWithMobileNet(num_refinement_stages)

    stride = 8
    sigma = 7
    path_thickness = 1
    dataset = CocoTrainDataset(prepared_train_labels,
                               train_images_folder,
                               stride,
                               sigma,
                               path_thickness,
                               transform=transforms.Compose([
                                   ConvertKeypoints(),
                                   Scale(),
                                   Rotate(pad=(128, 128, 128)),
                                   CropPad(pad=(128, 128, 128)),
                                   Flip()
                               ]))
    train_loader = DataLoader(dataset,
                              batch_size=batch_size,
                              shuffle=True,
                              num_workers=num_workers)

    optimizer = optim.Adam([
        {
            'params': get_parameters_conv(net.model, 'weight')
        },
        {
            'params': get_parameters_conv_depthwise(net.model, 'weight'),
            'weight_decay': 0
        },
        {
            'params': get_parameters_bn(net.model, 'weight'),
            'weight_decay': 0
        },
        {
            'params': get_parameters_bn(net.model, 'bias'),
            'lr': base_lr * 2,
            'weight_decay': 0
        },
        {
            'params': get_parameters_conv(net.cpm, 'weight'),
            'lr': base_lr
        },
        {
            'params': get_parameters_conv(net.cpm, 'bias'),
            'lr': base_lr * 2,
            'weight_decay': 0
        },
        {
            'params': get_parameters_conv_depthwise(net.cpm, 'weight'),
            'weight_decay': 0
        },
        {
            'params': get_parameters_conv(net.initial_stage, 'weight'),
            'lr': base_lr
        },
        {
            'params': get_parameters_conv(net.initial_stage, 'bias'),
            'lr': base_lr * 2,
            'weight_decay': 0
        },
        {
            'params': get_parameters_conv(net.refinement_stages, 'weight'),
            'lr': base_lr * 4
        },
        {
            'params': get_parameters_conv(net.refinement_stages, 'bias'),
            'lr': base_lr * 8,
            'weight_decay': 0
        },
        {
            'params': get_parameters_bn(net.refinement_stages, 'weight'),
            'weight_decay': 0
        },
        {
            'params': get_parameters_bn(net.refinement_stages, 'bias'),
            'lr': base_lr * 2,
            'weight_decay': 0
        },
    ],
                           lr=base_lr,
                           weight_decay=5e-4)

    num_iter = 0
    current_epoch = 0
    drop_after_epoch = [100, 200, 260]
    scheduler = optim.lr_scheduler.MultiStepLR(optimizer,
                                               milestones=drop_after_epoch,
                                               gamma=0.333)
    if checkpoint_path:
        checkpoint = torch.load(checkpoint_path)

        if from_mobilenet:
            load_from_mobilenet(net, checkpoint)
        else:
            load_state(net, checkpoint)
            if not weights_only:
                optimizer.load_state_dict(checkpoint['optimizer'])
                scheduler.load_state_dict(checkpoint['scheduler'])
                num_iter = checkpoint['iter']
                current_epoch = checkpoint['current_epoch']

    net = DataParallel(net).cuda()
    net.train()
    for epochId in range(current_epoch, 280):
        scheduler.step()
        total_losses = [0, 0] * (num_refinement_stages + 1
                                 )  # heatmaps loss, paf loss per stage
        batch_per_iter_idx = 0
        for batch_data in train_loader:
            if batch_per_iter_idx == 0:
                optimizer.zero_grad()

            images = batch_data['image'].cuda()
            keypoint_masks = batch_data['keypoint_mask'].cuda()
            paf_masks = batch_data['paf_mask'].cuda()
            keypoint_maps = batch_data['keypoint_maps'].cuda()
            paf_maps = batch_data['paf_maps'].cuda()

            stages_output = net(images)

            losses = []
            for loss_idx in range(len(total_losses) // 2):
                losses.append(
                    l2_loss(stages_output[loss_idx * 2], keypoint_maps,
                            keypoint_masks, images.shape[0]))
                losses.append(
                    l2_loss(stages_output[loss_idx * 2 + 1], paf_maps,
                            paf_masks, images.shape[0]))
                total_losses[loss_idx *
                             2] += losses[-2].item() / batches_per_iter
                total_losses[loss_idx * 2 +
                             1] += losses[-1].item() / batches_per_iter

            loss = losses[0]
            for loss_idx in range(1, len(losses)):
                loss += losses[loss_idx]
            loss /= batches_per_iter
            loss.backward()
            batch_per_iter_idx += 1
            if batch_per_iter_idx == batches_per_iter:
                optimizer.step()
                batch_per_iter_idx = 0
                num_iter += 1
            else:
                continue

            if num_iter % log_after == 0:
                print('Iter: {}'.format(num_iter))
                for loss_idx in range(len(total_losses) // 2):
                    print('\n'.join([
                        'stage{}_pafs_loss:     {}',
                        'stage{}_heatmaps_loss: {}'
                    ]).format(loss_idx + 1,
                              total_losses[loss_idx * 2 + 1] / log_after,
                              loss_idx + 1,
                              total_losses[loss_idx * 2] / log_after))
                for loss_idx in range(len(total_losses)):
                    total_losses[loss_idx] = 0
            if num_iter % checkpoint_after == 0:
                snapshot_name = '{}/checkpoint_iter_{}.pth'.format(
                    checkpoints_folder, num_iter)
                torch.save(
                    {
                        'state_dict': net.module.state_dict(),
                        'optimizer': optimizer.state_dict(),
                        'scheduler': scheduler.state_dict(),
                        'iter': num_iter,
                        'current_epoch': epochId
                    }, snapshot_name)
            if num_iter % val_after == 0:
                print('Validation...')
                evaluate(val_labels, val_output_name, val_images_folder, net)
                net.train()
Beispiel #3
0
def train(
    images_folder,
    num_refinement_stages,
    base_lr,
    batch_size,
    batches_per_iter,
    num_workers,
    checkpoint_path,
    weights_only,
    from_mobilenet,
    checkpoints_folder,
    log_after,
    checkpoint_after,
):
    net = SinglePersonPoseEstimationWithMobileNet(num_refinement_stages).cuda()
    stride = 8
    sigma = 7
    dataset = LipTrainDataset(
        images_folder,
        stride,
        sigma,
        transform=transforms.Compose([
            SinglePersonBodyMasking(),
            ChannelPermutation(),
            SinglePersonRotate(pad=(128, 128, 128), max_rotate_degree=40),
            SinglePersonCropPad(pad=(128, 128, 128), crop_x=256, crop_y=256),
            SinglePersonFlip(
                left_keypoints_indice=LipTrainDataset.left_keypoints_indice,
                right_keypoints_indice=LipTrainDataset.right_keypoints_indice,
            ),
        ]),
    )
    train_loader = DataLoader(dataset,
                              batch_size=batch_size,
                              shuffle=True,
                              num_workers=num_workers)

    optimizer = optim.Adam(
        [
            {
                "params": get_parameters_conv(net.model, "weight")
            },
            {
                "params": get_parameters_conv_depthwise(net.model, "weight"),
                "weight_decay": 0,
            },
            {
                "params": get_parameters_bn(net.model, "weight"),
                "weight_decay": 0
            },
            {
                "params": get_parameters_bn(net.model, "bias"),
                "lr": base_lr * 2,
                "weight_decay": 0,
            },
            {
                "params": get_parameters_conv(net.cpm, "weight"),
                "lr": base_lr
            },
            {
                "params": get_parameters_conv(net.cpm, "bias"),
                "lr": base_lr * 2,
                "weight_decay": 0,
            },
            {
                "params": get_parameters_conv_depthwise(net.cpm, "weight"),
                "weight_decay": 0,
            },
            {
                "params": get_parameters_conv(net.initial_stage, "weight"),
                "lr": base_lr
            },
            {
                "params": get_parameters_conv(net.initial_stage, "bias"),
                "lr": base_lr * 2,
                "weight_decay": 0,
            },
            {
                "params": get_parameters_bn(net.initial_stage, "weight"),
                "weight_decay": 0,
            },
            {
                "params": get_parameters_bn(net.initial_stage, "bias"),
                "lr": base_lr * 2,
                "weight_decay": 0,
            },
            {
                "params": get_parameters_conv(net.refinement_stages, "weight"),
                "lr": base_lr * 4,
            },
            {
                "params": get_parameters_conv(net.refinement_stages, "bias"),
                "lr": base_lr * 8,
                "weight_decay": 0,
            },
            {
                "params": get_parameters_bn(net.refinement_stages, "weight"),
                "weight_decay": 0,
            },
            {
                "params": get_parameters_bn(net.refinement_stages, "bias"),
                "lr": base_lr * 2,
                "weight_decay": 0,
            },
        ],
        lr=base_lr,
        weight_decay=5e-4,
    )

    num_iter = 0
    current_epoch = 0
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                     factor=0.1,
                                                     patience=5,
                                                     threshold=1e-2,
                                                     verbose=True)
    if checkpoint_path:
        checkpoint = torch.load(checkpoint_path)

        if from_mobilenet:
            load_from_mobilenet(net, checkpoint)
        else:
            load_state(net, checkpoint)
            if not weights_only:
                optimizer.load_state_dict(checkpoint["optimizer"])
                scheduler.load_state_dict(checkpoint["scheduler"])
                num_iter = checkpoint["iter"]
                current_epoch = checkpoint["current_epoch"] + 1

    net = DataParallel(net)
    net.train()
    for epochId in range(current_epoch, 100):
        print("Epoch: {}".format(epochId))
        net.train()
        total_losses = [0] * (num_refinement_stages + 1
                              )  # heatmaps loss per stage
        batch_per_iter_idx = 0
        for batch_data in train_loader:
            if batch_per_iter_idx == 0:
                optimizer.zero_grad()

            images = batch_data["image"].cuda()
            keypoint_maps = batch_data["keypoint_maps"].cuda()

            stages_output = net(images)

            losses = []
            for loss_idx in range(len(total_losses)):
                losses.append(
                    l2_loss(stages_output[loss_idx], keypoint_maps,
                            images.shape[0]))
                total_losses[loss_idx] += losses[-1].item() / batches_per_iter

            loss = losses[0]
            for loss_idx in range(1, len(losses)):
                loss += losses[loss_idx]
            loss /= batches_per_iter
            loss.backward()
            batch_per_iter_idx += 1
            if batch_per_iter_idx == batches_per_iter:
                optimizer.step()
                batch_per_iter_idx = 0
                num_iter += 1
            else:
                continue

            if num_iter % log_after == 0:
                print("Iter: {}".format(num_iter))
                for loss_idx in range(len(total_losses)):
                    print("\n".join(["stage{}_heatmaps_loss: {}"]).format(
                        loss_idx + 1, total_losses[loss_idx] / log_after))
                for loss_idx in range(len(total_losses)):
                    total_losses[loss_idx] = 0

        snapshot_name = "{}/checkpoint_last_epoch.pth".format(
            checkpoints_folder)
        torch.save(
            {
                "state_dict": net.module.state_dict(),
                "optimizer": optimizer.state_dict(),
                "scheduler": scheduler.state_dict(),
                "iter": num_iter,
                "current_epoch": epochId,
            },
            snapshot_name,
        )
        if (epochId + 1) % checkpoint_after == 0:
            snapshot_name = "{}/checkpoint_epoch_{}.pth".format(
                checkpoints_folder, epochId)
            torch.save(
                {
                    "state_dict": net.module.state_dict(),
                    "optimizer": optimizer.state_dict(),
                    "scheduler": scheduler.state_dict(),
                    "iter": num_iter,
                    "current_epoch": epochId,
                },
                snapshot_name,
            )
        print("Validation...")
        net.eval()
        eval_num = 1000
        val_dataset = LipValDataset(images_folder, eval_num)
        predictions_name = "{}/val_results.csv".format(checkpoints_folder)
        evaluate(val_dataset, predictions_name, net)
        pck = calc_pckh(val_dataset.labels_file_path,
                        predictions_name,
                        eval_num=eval_num)

        val_loss = 100 - pck[-1][-1]  # 100 - avg_pckh
        print("Val loss: {}".format(val_loss))
        scheduler.step(val_loss, epochId)
Beispiel #4
0
def train(images_folder, num_refinement_stages, base_lr, batch_size, batches_per_iter,
          num_workers, checkpoint_path, weights_only, from_mobilenet, checkpoints_folder,
          log_after, checkpoint_after):

    dataset = CocoSingleTrainDataset(images_folder,
                                     transform=transforms.Compose([
                                         HalfBodyTransform(),
                                         RandomScaleRotate(),
                                         SinglePersonFlip(left_keypoints_indice=
                                                          CocoSingleTrainDataset.left_keypoints_indice,
                                                          right_keypoints_indice=
                                                          CocoSingleTrainDataset.right_keypoints_indice),
                                         SinglePersonRandomAffineTransform(),
                                         SinglePersonBodyMasking(),
                                         Normalization(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
                                         ChannelPermutation()
                                         ]))
    net = SinglePersonPoseEstimationWithMobileNet(num_refinement_stages, num_heatmaps=dataset._num_keypoints,
                                                  mode='nearest').cuda()
    train_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers)

    optimizer = optim.Adam(net.parameters(), lr=base_lr)
    scheduler = optim.lr_scheduler.MultiStepLR(optimizer, [170, 200], 0.1)

    num_iter = 0
    current_epoch = 0
    if checkpoint_path:
        checkpoint = torch.load(checkpoint_path)
        if from_mobilenet:
            load_from_mobilenet(net, checkpoint)
        else:
            load_state(net, checkpoint)
            if not weights_only:
                optimizer.load_state_dict(checkpoint['optimizer'])
                scheduler.load_state_dict(checkpoint['scheduler'])
                num_iter = checkpoint['iter']
                current_epoch = checkpoint['current_epoch']+1

    net = DataParallel(net)
    net.train()
    for epochId in range(current_epoch, 210):
        print('Epoch: {}'.format(epochId))
        net.train()
        total_losses = [0] * (num_refinement_stages + 1)  # heatmaps loss per stage
        batch_per_iter_idx = 0
        for batch_data in train_loader:
            if batch_per_iter_idx == 0:
                optimizer.zero_grad()

            images = batch_data['image'].float().cuda()
            keypoint_maps = batch_data['keypoint_maps']
            stages_output = net(images)

            losses = []
            for loss_idx in range(len(total_losses)):
                losses.append(mse_loss(stages_output[loss_idx], keypoint_maps,
                                       batch_data['keypoints'][:, 2::3].view(batch_data['keypoints'].shape[0], -1, 1)))
                total_losses[loss_idx] += losses[-1].item() / batches_per_iter

            loss = 0
            for loss_idx in range(len(losses)):
                loss += losses[loss_idx]
            loss /= batches_per_iter
            loss.backward()
            batch_per_iter_idx += 1
            if batch_per_iter_idx == batches_per_iter:
                optimizer.step()
                batch_per_iter_idx = 0
                num_iter += 1
            else:
                continue
            if num_iter % log_after == 0:
                print('Iter: {}'.format(num_iter))
                for loss_idx in range(len(total_losses)):
                    print('\n'.join(['stage{}_heatmaps_loss: {}']).format(
                        loss_idx + 1, total_losses[loss_idx] / log_after))
                for loss_idx in range(len(total_losses)):
                    total_losses[loss_idx] = 0

        snapshot_name = '{}/checkpoint_last_epoch.pth'.format(checkpoints_folder)
        torch.save({'state_dict': net.module.state_dict(),
                    'optimizer': optimizer.state_dict(),
                    'scheduler': scheduler.state_dict(),
                    'iter': num_iter,
                    'current_epoch': epochId},
                   snapshot_name)

        if (epochId + 1) % checkpoint_after == 0:
            snapshot_name = '{}/checkpoint_epoch_{}.pth'.format(checkpoints_folder, epochId)
            torch.save({'state_dict': net.module.state_dict(),
                        'optimizer': optimizer.state_dict(),
                        'scheduler': scheduler.state_dict(),
                        'iter': num_iter,
                        'current_epoch': epochId},
                       snapshot_name)
        print('Validation...')
        net.eval()
        val_dataset = CocoSingleValDataset(images_folder, transform=transforms.Compose([
                                         SinglePersonRandomAffineTransform(mode='val'),
                                         Normalization(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]))
        predictions_name = '{}/val_results2.json'.format(checkpoints_folder)
        val_loss = val(net, val_dataset, predictions_name, 'CocoSingle')
        print('Val loss: {}'.format(val_loss))
        scheduler.step()
def train(images_folder, num_refinement_stages, base_lr, batch_size,
          batches_per_iter, num_workers, checkpoint_path, weights_only,
          from_mobilenet, checkpoints_folder, log_after, checkpoint_after):
    net = SinglePersonPoseEstimationWithMobileNet(num_refinement_stages,
                                                  num_heatmaps=18).cuda()

    train_dataset = dtst_train(images_folder,
                               STRIDE,
                               SIGMA,
                               transform=transforms.Compose([
                                   SinglePersonBodyMasking(),
                                   ChannelPermutation(),
                                   SinglePersonRotate(pad=(128, 128, 128),
                                                      max_rotate_degree=40),
                                   SinglePersonCropPad(pad=(128, 128, 128),
                                                       crop_x=256,
                                                       crop_y=256),
                                   SinglePersonFlip()
                               ]))
    train_loader = DataLoader(train_dataset,
                              batch_size=batch_size,
                              shuffle=True,
                              num_workers=num_workers)

    val_dataset = dtst_val(images_folder, STRIDE, SIGMA)
    val_loader = DataLoader(val_dataset,
                            batch_size=batch_size,
                            shuffle=False,
                            num_workers=num_workers)

    optimizer = optim.Adam([
        {
            'params': get_parameters_conv(net.model, 'weight')
        },
        {
            'params': get_parameters_conv_depthwise(net.model, 'weight'),
            'weight_decay': 0
        },
        {
            'params': get_parameters_bn(net.model, 'weight'),
            'weight_decay': 0
        },
        {
            'params': get_parameters_bn(net.model, 'bias'),
            'lr': base_lr * 2,
            'weight_decay': 0
        },
        {
            'params': get_parameters_conv(net.cpm, 'weight'),
            'lr': base_lr
        },
        {
            'params': get_parameters_conv(net.cpm, 'bias'),
            'lr': base_lr * 2,
            'weight_decay': 0
        },
        {
            'params': get_parameters_conv_depthwise(net.cpm, 'weight'),
            'weight_decay': 0
        },
        {
            'params': get_parameters_conv(net.initial_stage, 'weight'),
            'lr': base_lr
        },
        {
            'params': get_parameters_conv(net.initial_stage, 'bias'),
            'lr': base_lr * 2,
            'weight_decay': 0
        },
        {
            'params': get_parameters_bn(net.initial_stage, 'weight'),
            'weight_decay': 0
        },
        {
            'params': get_parameters_bn(net.initial_stage, 'bias'),
            'lr': base_lr * 2,
            'weight_decay': 0
        },
        {
            'params': get_parameters_conv(net.refinement_stages, 'weight'),
            'lr': base_lr * 4
        },
        {
            'params': get_parameters_conv(net.refinement_stages, 'bias'),
            'lr': base_lr * 8,
            'weight_decay': 0
        },
        {
            'params': get_parameters_bn(net.refinement_stages, 'weight'),
            'weight_decay': 0
        },
        {
            'params': get_parameters_bn(net.refinement_stages, 'bias'),
            'lr': base_lr * 2,
            'weight_decay': 0
        },
    ],
                           lr=base_lr,
                           weight_decay=5e-4)

    num_iter = 0
    current_epoch = 0
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                     factor=0.1,
                                                     patience=5,
                                                     threshold=1e-2,
                                                     verbose=True)

    if checkpoint_path:
        checkpoint = torch.load(checkpoint_path)
        if from_mobilenet:
            load_from_mobilenet(net, checkpoint)
        else:
            load_state(net, checkpoint)
            if not weights_only:
                optimizer.load_state_dict(checkpoint['optimizer'])
                scheduler.load_state_dict(checkpoint['scheduler'])
                num_iter = checkpoint['iter']
                num_iter = num_iter // log_after * log_after  # round iterations, to print proper loss when resuming
                current_epoch = checkpoint['current_epoch'] + 1

    net = DataParallel(net)
    net.train()
    for epochId in range(current_epoch, 100):
        print('Epoch: {}'.format(epochId))
        N_losses = num_refinement_stages + 1
        total_losses = [0] * N_losses  # heatmaps loss per stage
        for batch in train_loader:
            images = batch['image'].cuda()
            keypoint_maps = batch['keypoint_maps'].cuda()

            stages_output = net(images)

            losses = []
            for loss_idx in range(N_losses):
                loss = l2_loss(stages_output[loss_idx], keypoint_maps,
                               len(images))
                losses.append(loss)
                total_losses[loss_idx] += loss.item()

            optimizer.zero_grad()
            loss = losses[0]
            for i in range(1, N_losses):
                loss += losses[i]
            loss.backward()
            optimizer.step()

            num_iter += 1

            if num_iter % log_after == 0:
                print('Iter: {}'.format(num_iter))
                # for loss_idx in range(N_losses):
                # print('\n'.join(['stage{}_heatmaps_loss: {}']).format(
                #       loss_idx + 1, total_losses[loss_idx] / log_after))
                for loss_idx in range(N_losses):
                    total_losses[loss_idx] = 0
                validate2(epochId, net, val_loader, scheduler)

        snapshot_name = '{}/{}_epoch_last.pth'.format(checkpoints_folder,
                                                      DATASET)
        torch.save(
            {
                'state_dict': net.module.state_dict(),
                'optimizer': optimizer.state_dict(),
                'scheduler': scheduler.state_dict(),
                'iter': num_iter,
                'current_epoch': epochId
            }, snapshot_name)

        if epochId % checkpoint_after == 0:
            snapshot_name = '{}/{}_epoch_{}.pth'.format(
                checkpoints_folder, DATASET, epochId)
            torch.save(
                {
                    'state_dict': net.module.state_dict(),
                    'optimizer': optimizer.state_dict(),
                    'scheduler': scheduler.state_dict(),
                    'iter': num_iter,
                    'current_epoch': epochId
                }, snapshot_name)

        validate2(epochID, net, val_loader, scheduler)
def train(images_folder, num_refinement_stages, base_lr, batch_size,
          batches_per_iter, num_workers, checkpoint_path, weights_only,
          from_mobilenet, checkpoints_folder, log_after, checkpoint_after):
    net = SinglePersonPoseEstimationWithMobileNet(num_refinement_stages).cuda()
    stride = 8
    sigma = 7
    dataset = LipTrainDataset(images_folder,
                              stride,
                              sigma,
                              transform=transforms.Compose([
                                  SinglePersonBodyMasking(),
                                  ChannelPermutation(),
                                  SinglePersonRotate(pad=(128, 128, 128),
                                                     max_rotate_degree=40),
                                  SinglePersonCropPad(pad=(128, 128, 128),
                                                      crop_x=256,
                                                      crop_y=256),
                                  SinglePersonFlip()
                              ]))
    train_loader = DataLoader(dataset,
                              batch_size=batch_size,
                              shuffle=True,
                              num_workers=num_workers)

    optimizer = optim.Adam([
        {
            'params': get_parameters_conv(net.model, 'weight')
        },
        {
            'params': get_parameters_conv_depthwise(net.model, 'weight'),
            'weight_decay': 0
        },
        {
            'params': get_parameters_bn(net.model, 'weight'),
            'weight_decay': 0
        },
        {
            'params': get_parameters_bn(net.model, 'bias'),
            'lr': base_lr * 2,
            'weight_decay': 0
        },
        {
            'params': get_parameters_conv(net.cpm, 'weight'),
            'lr': base_lr
        },
        {
            'params': get_parameters_conv(net.cpm, 'bias'),
            'lr': base_lr * 2,
            'weight_decay': 0
        },
        {
            'params': get_parameters_conv_depthwise(net.cpm, 'weight'),
            'weight_decay': 0
        },
        {
            'params': get_parameters_conv(net.initial_stage, 'weight'),
            'lr': base_lr
        },
        {
            'params': get_parameters_conv(net.initial_stage, 'bias'),
            'lr': base_lr * 2,
            'weight_decay': 0
        },
        {
            'params': get_parameters_bn(net.initial_stage, 'weight'),
            'weight_decay': 0
        },
        {
            'params': get_parameters_bn(net.initial_stage, 'bias'),
            'lr': base_lr * 2,
            'weight_decay': 0
        },
        {
            'params': get_parameters_conv(net.refinement_stages, 'weight'),
            'lr': base_lr * 4
        },
        {
            'params': get_parameters_conv(net.refinement_stages, 'bias'),
            'lr': base_lr * 8,
            'weight_decay': 0
        },
        {
            'params': get_parameters_bn(net.refinement_stages, 'weight'),
            'weight_decay': 0
        },
        {
            'params': get_parameters_bn(net.refinement_stages, 'bias'),
            'lr': base_lr * 2,
            'weight_decay': 0
        },
    ],
                           lr=base_lr,
                           weight_decay=5e-4)

    num_iter = 0
    current_epoch = 0
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                     factor=0.1,
                                                     patience=5,
                                                     threshold=1e-2,
                                                     verbose=True)
    if checkpoint_path:
        checkpoint = torch.load(checkpoint_path)

        if from_mobilenet:
            load_from_mobilenet(net, checkpoint)
        else:
            load_state(net, checkpoint)
            if not weights_only:
                optimizer.load_state_dict(checkpoint['optimizer'])
                scheduler.load_state_dict(checkpoint['scheduler'])
                num_iter = checkpoint['iter']
                num_iter = num_iter // log_after * log_after  # round iterations, to print proper loss when resuming
                current_epoch = checkpoint['current_epoch'] + 1

    net = DataParallel(net)
    net.train()
    for epochId in range(current_epoch, 100):
        print('Epoch: {}'.format(epochId))
        net.train()
        total_losses = [0] * (num_refinement_stages + 1
                              )  # heatmaps loss per stage
        batch_per_iter_idx = 0
        for batch_data in train_loader:
            if batch_per_iter_idx == 0:
                optimizer.zero_grad()

            images = batch_data['image'].cuda()
            keypoint_maps = batch_data['keypoint_maps'].cuda()

            stages_output = net(images)

            losses = []
            for loss_idx in range(len(total_losses)):
                losses.append(
                    l2_loss(stages_output[loss_idx], keypoint_maps,
                            images.shape[0]))
                total_losses[loss_idx] += losses[-1].item() / batches_per_iter

            loss = losses[0]
            for loss_idx in range(1, len(losses)):
                loss += losses[loss_idx]
            loss /= batches_per_iter
            loss.backward()
            batch_per_iter_idx += 1
            if batch_per_iter_idx == batches_per_iter:
                optimizer.step()
                batch_per_iter_idx = 0
                num_iter += 1
            else:
                continue

            if num_iter % log_after == 0:
                print('Iter: {}'.format(num_iter))
                for loss_idx in range(len(total_losses)):
                    print('\n'.join(['stage{}_heatmaps_loss: {}']).format(
                        loss_idx + 1, total_losses[loss_idx] / log_after))
                for loss_idx in range(len(total_losses)):
                    total_losses[loss_idx] = 0

        snapshot_name = '{}/checkpoint_last_epoch.pth'.format(
            checkpoints_folder)
        torch.save(
            {
                'state_dict': net.module.state_dict(),
                'optimizer': optimizer.state_dict(),
                'scheduler': scheduler.state_dict(),
                'iter': num_iter,
                'current_epoch': epochId
            }, snapshot_name)
        if (epochId + 1) % checkpoint_after == 0:
            snapshot_name = '{}/checkpoint_epoch_{}.pth'.format(
                checkpoints_folder, epochId + 1)
            torch.save(
                {
                    'state_dict': net.module.state_dict(),
                    'optimizer': optimizer.state_dict(),
                    'scheduler': scheduler.state_dict(),
                    'iter': num_iter,
                    'current_epoch': epochId
                }, snapshot_name)
        print('Validation...')
        net.eval()
        eval_num = 1000
        val_dataset = LipValDataset(images_folder, eval_num)
        predictions_name = '{}/val_results.csv'.format(checkpoints_folder)
        evaluate(val_dataset, predictions_name, net)
        pck = calc_pckh(val_dataset.labels_file_path,
                        predictions_name,
                        eval_num=eval_num)

        val_loss = 100 - pck[-1][-1]  # 100 - avg_pckh
        print('Val loss: {}'.format(val_loss))
        scheduler.step(val_loss, epochId)
def train(prepared_train_labels, train_images_folder, num_refinement_stages, base_lr, batch_size, batches_per_iter,
          num_workers, checkpoint_path, weights_only, from_mobilenet, checkpoints_folder, log_after,
          val_labels, val_images_folder, val_output_name, checkpoint_after, val_after):

    net = PoseEstimationWithMobileNet(num_refinement_stages)#---------------------------------for training, define a PoseEstimation model

    stride = 8
    sigma = 7
    path_thickness = 1
    dataset = CocoTrainDataset(prepared_train_labels, train_images_folder,
                               stride, sigma, path_thickness,
                               transform=transforms.Compose([
                                   ConvertKeypoints(),
                                   Scale(),
                                   Rotate(pad=(128, 128, 128)),
                                   CropPad(pad=(128, 128, 128)),
                                   Flip()]))
    train_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers)

    #If    you    need    to    move    a    model    to    GPU    via.cuda(), please    do    so   before
    # constructing    optimizers    for it.Parameters of a model after.cuda() will be different objects with those before the call.


    optimizer = optim.Adam([
        {'params': get_parameters_conv(net.model, 'weight')},
        {'params': get_parameters_conv_depthwise(net.model, 'weight'), 'weight_decay': 0},
        {'params': get_parameters_bn(net.model, 'weight'), 'weight_decay': 0},
        {'params': get_parameters_bn(net.model, 'bias'), 'lr': base_lr * 2, 'weight_decay': 0},
        {'params': get_parameters_conv(net.cpm, 'weight'), 'lr': base_lr},
        {'params': get_parameters_conv(net.cpm, 'bias'), 'lr': base_lr * 2, 'weight_decay': 0},
        {'params': get_parameters_conv_depthwise(net.cpm, 'weight'), 'weight_decay': 0},
        {'params': get_parameters_conv(net.initial_stage, 'weight'), 'lr': base_lr},
        {'params': get_parameters_conv(net.initial_stage, 'bias'), 'lr': base_lr * 2, 'weight_decay': 0},
        {'params': get_parameters_conv(net.refinement_stages, 'weight'), 'lr': base_lr * 4},
        {'params': get_parameters_conv(net.refinement_stages, 'bias'), 'lr': base_lr * 8, 'weight_decay': 0},
        {'params': get_parameters_bn(net.refinement_stages, 'weight'), 'weight_decay': 0},
        {'params': get_parameters_bn(net.refinement_stages, 'bias'), 'lr': base_lr * 2, 'weight_decay': 0},
    ], lr=base_lr, weight_decay=5e-4)

    num_iter = 0
    current_epoch = 0
    drop_after_epoch = [100, 200, 260]

    #torch.optim.lr_scheduler provides several methods to adjust the learning rate based on the number of epochs. #------------------------VVI

    scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=drop_after_epoch, gamma=0.333)
    if checkpoint_path:                             #--------check if the training needs to be continued from a certain pth checkpoint
        checkpoint = torch.load(checkpoint_path)#-------------VVI: it can be wts for other parts along with the mobile net wts or only the mobilenet

        if from_mobilenet:
            load_from_mobilenet(net, checkpoint)#target, source
        else:
            load_state(net, checkpoint)
            if not weights_only:#--------------------------------------If you want to load not only the weights but also other parameters
                optimizer.load_state_dict(checkpoint['optimizer'])#-----------------when we save a model we save not only weights but also things like lr and thus
                scheduler.load_state_dict(checkpoint['scheduler'])#-----------------we can load them like this
                num_iter = checkpoint['iter']
                current_epoch = checkpoint['current_epoch']

    net = DataParallel(net).cuda()
    net.train()
    for epochId in range(current_epoch, 280):#------------------------------------------------------training for only 280 epochs
        print("This is Epoch No ",str(epochId))
        scheduler.step()
        total_losses = [0, 0] * (num_refinement_stages + 1)  # heatmaps loss, paf loss per stage
        batch_per_iter_idx = 0
        for batch_data in train_loader:
            if batch_per_iter_idx == 0:
                optimizer.zero_grad()


            images = batch_data['image'].cuda()
            keypoint_masks = batch_data['keypoint_mask'].cuda()
            paf_masks = batch_data['paf_mask'].cuda()
            keypoint_maps = batch_data['keypoint_maps'].cuda()
            paf_maps = batch_data['paf_maps'].cuda()
            # import time
            # print(images.shape)
            # time.sleep(222)
            stages_output = net(images)

            losses = []
            for loss_idx in range(len(total_losses) // 2):
                losses.append(l2_loss(stages_output[loss_idx * 2], keypoint_maps, keypoint_masks, images.shape[0]))
                losses.append(l2_loss(stages_output[loss_idx * 2 + 1], paf_maps, paf_masks, images.shape[0]))
                total_losses[loss_idx * 2] += losses[-2].item() / batches_per_iter
                total_losses[loss_idx * 2 + 1] += losses[-1].item() / batches_per_iter

            loss = losses[0]
            for loss_idx in range(1, len(losses)):
                loss += losses[loss_idx]
            loss /= batches_per_iter
            loss.backward()
            batch_per_iter_idx += 1
            if batch_per_iter_idx == batches_per_iter:
                optimizer.step()
                batch_per_iter_idx = 0
                num_iter += 1
            else:
                continue

            if num_iter % log_after == 0:
                print('Iter: {}'.format(num_iter))
                for loss_idx in range(len(total_losses) // 2):
                    print('\n'.join(['stage{}_pafs_loss:     {}', 'stage{}_heatmaps_loss: {}']).format(
                        loss_idx + 1, total_losses[loss_idx * 2 + 1] / log_after,
                        loss_idx + 1, total_losses[loss_idx * 2] / log_after))
                for loss_idx in range(len(total_losses)):
                    total_losses[loss_idx] = 0
            if num_iter % checkpoint_after == 0:
                snapshot_name = '{}/checkpoint_iter_{}_after_37000.pth'.format(checkpoints_folder, num_iter)
                torch.save({'state_dict': net.module.state_dict(),
                            'optimizer': optimizer.state_dict(),
                            'scheduler': scheduler.state_dict(),
                            'iter': num_iter,
                            'current_epoch': epochId},
                           snapshot_name)
            if num_iter % val_after == 0:
                print('Validation...')
                evaluate(val_labels, val_output_name, val_images_folder, net)
                net.train()
Beispiel #8
0
def train(prepared_train_labels, train_images_folder, num_refinement_stages,
          base_lr, batch_size, batches_per_iter, num_workers, checkpoint_path,
          weights_only, from_mobilenet, checkpoints_folder, log_after,
          val_labels, val_images_folder, val_output_name, checkpoint_after,
          val_after):
    net = PoseEstimationWithMobileNet(num_refinement_stages)

    stride = 8
    sigma = 7
    path_thickness = 1
    dataset = CocoTrainDataset(prepared_train_labels,
                               train_images_folder,
                               stride,
                               sigma,
                               path_thickness,
                               transform=transforms.Compose([
                                   ConvertKeypoints(),
                                   Scale(),
                                   Rotate(pad=(128, 128, 128)),
                                   CropPad(pad=(128, 128, 128)),
                                   Flip()
                               ]))
    train_loader = DataLoader(dataset,
                              batch_size=batch_size,
                              shuffle=True,
                              num_workers=num_workers)

    optimizer = optim.Adam([
        {
            'params': get_parameters_conv(net.model, 'weight')
        },
        {
            'params': get_parameters_conv_depthwise(net.model, 'weight'),
            'weight_decay': 0
        },
        {
            'params': get_parameters_bn(net.model, 'weight'),
            'weight_decay': 0
        },
        {
            'params': get_parameters_bn(net.model, 'bias'),
            'lr': base_lr * 2,
            'weight_decay': 0
        },
        {
            'params': get_parameters_conv(net.cpm, 'weight'),
            'lr': base_lr
        },
        {
            'params': get_parameters_conv(net.cpm, 'bias'),
            'lr': base_lr * 2,
            'weight_decay': 0
        },
        {
            'params': get_parameters_conv_depthwise(net.cpm, 'weight'),
            'weight_decay': 0
        },
        {
            'params': get_parameters_conv(net.initial_stage, 'weight'),
            'lr': base_lr
        },
        {
            'params': get_parameters_conv(net.initial_stage, 'bias'),
            'lr': base_lr * 2,
            'weight_decay': 0
        },
        {
            'params': get_parameters_conv(net.refinement_stages, 'weight'),
            'lr': base_lr * 4
        },
        {
            'params': get_parameters_conv(net.refinement_stages, 'bias'),
            'lr': base_lr * 8,
            'weight_decay': 0
        },
        {
            'params': get_parameters_bn(net.refinement_stages, 'weight'),
            'weight_decay': 0
        },
        {
            'params': get_parameters_bn(net.refinement_stages, 'bias'),
            'lr': base_lr * 2,
            'weight_decay': 0
        },
    ],
                           lr=base_lr,
                           weight_decay=5e-4)

    num_iter = 0
    current_epoch = 0
    drop_after_epoch = [100, 200, 260]
    scheduler = optim.lr_scheduler.MultiStepLR(optimizer,
                                               milestones=drop_after_epoch,
                                               gamma=0.333)
    if checkpoint_path:
        checkpoint = torch.load(checkpoint_path)

        if from_mobilenet:
            load_from_mobilenet(net, checkpoint)
        else:
            load_state(net, checkpoint)
            if not weights_only:
                optimizer.load_state_dict(checkpoint['optimizer'])
                scheduler.load_state_dict(checkpoint['scheduler'])
                num_iter = checkpoint['iter']
                current_epoch = checkpoint['current_epoch']

    net = DataParallel(net).cuda()
    net.train()
    for epochId in range(current_epoch, 280):
        scheduler.step()
        total_losses = [0, 0] * (num_refinement_stages + 1
                                 )  # heatmaps loss, paf loss per stage
        batch_per_iter_idx = 0
        for batch_data in train_loader:
            if batch_per_iter_idx == 0:
                optimizer.zero_grad()

            # print("show imgs"
            #       , batch_data['keypoint_maps'].shape, batch_data['paf_maps'].shape
            #       , batch_data['keypoint_mask'].shape, batch_data['paf_mask'].shape
            #       , batch_data['mask'].shape, batch_data['image'].shape
            #       )
            # print("seg", batch_data['label']['segmentations'])
            print("batched images size", batch_data['image'].shape)

            vis.images(batch_data['image'][:, [2, 1, 0], ...] + 0.5,
                       4,
                       2,
                       "1",
                       opts=dict(title="img"))
            vis.images(batch_data['keypoint_mask'].permute(1, 0, 2, 3),
                       4,
                       2,
                       "2",
                       opts=dict(title="kp_mask"))
            vis.images(batch_data['paf_mask'].permute(1, 0, 2, 3),
                       4,
                       2,
                       "3",
                       opts=dict(title="paf_mask"))
            vis.images(batch_data['keypoint_maps'].permute(1, 0, 2, 3),
                       4,
                       2,
                       "4",
                       opts=dict(title="keypoint_maps"))
            vis.images(batch_data['paf_maps'].permute(1, 0, 2, 3),
                       4,
                       2,
                       "5",
                       opts=dict(title="paf_maps"))
            vis.images(batch_data['mask'].unsqueeze(0),
                       4,
                       2,
                       "6",
                       opts=dict(title="MASK"))

            images = batch_data['image'].cuda()
            keypoint_masks = batch_data['keypoint_mask'].cuda()
            paf_masks = batch_data['paf_mask'].cuda()
            keypoint_maps = batch_data['keypoint_maps'].cuda()
            paf_maps = batch_data['paf_maps'].cuda()

            pafs = batch_data['paf_maps'][0].permute(1, 2, 0).numpy()

            scale = 4
            img_p = np.zeros((pafs.shape[1] * 8, pafs.shape[0] * 8, 3),
                             dtype=np.uint8)
            # pafs[pafs < 0.07] = 0
            for idx in range(len(BODY_PARTS_PAF_IDS)):
                # print(pp, pafs.shape)
                pp = BODY_PARTS_PAF_IDS[idx]
                k_idx = BODY_PARTS_KPT_IDS[idx]
                cc = BODY_CONN_COLOR[idx]

                vx = pafs[:, :, pp[0]]
                vy = pafs[:, :, pp[1]]
                for i in range(pafs.shape[1]):
                    for j in range(pafs.shape[0]):
                        a = (i * 2 * scale, j * 2 * scale)
                        b = (2 * int((i + vx[j, i] * 3) * scale), 2 * int(
                            (j + vy[j, i] * 3) * scale))
                        if a[0] == b[0] and a[1] == b[1]:
                            continue

                        cv2.line(img_p, a, b, cc, 1)

                # break

            cv2.imshow("paf", img_p)
            key = cv2.waitKey(0)
            if key == 27:  # esc
                exit(0)

            stages_output = net(images)

            losses = []
            for loss_idx in range(len(total_losses) // 2):
                losses.append(
                    l2_loss(stages_output[loss_idx * 2], keypoint_maps,
                            keypoint_masks, images.shape[0]))
                losses.append(
                    l2_loss(stages_output[loss_idx * 2 + 1], paf_maps,
                            paf_masks, images.shape[0]))
                total_losses[loss_idx *
                             2] += losses[-2].item() / batches_per_iter
                total_losses[loss_idx * 2 +
                             1] += losses[-1].item() / batches_per_iter

            loss = losses[0]
            for loss_idx in range(1, len(losses)):
                loss += losses[loss_idx]
            loss /= batches_per_iter
            loss.backward()
            batch_per_iter_idx += 1
            if batch_per_iter_idx == batches_per_iter:
                optimizer.step()
                batch_per_iter_idx = 0
                num_iter += 1
            else:
                continue

            if num_iter % log_after == 0:
                print('Iter: {}'.format(num_iter))
                for loss_idx in range(len(total_losses) // 2):
                    print('\n'.join([
                        'stage{}_pafs_loss:     {}',
                        'stage{}_heatmaps_loss: {}'
                    ]).format(loss_idx + 1,
                              total_losses[loss_idx * 2 + 1] / log_after,
                              loss_idx + 1,
                              total_losses[loss_idx * 2] / log_after))
                for loss_idx in range(len(total_losses)):
                    total_losses[loss_idx] = 0
            if num_iter % checkpoint_after == 0:
                snapshot_name = '{}/checkpoint_iter_{}.pth'.format(
                    checkpoints_folder, num_iter)
                torch.save(
                    {
                        'state_dict': net.module.state_dict(),
                        'optimizer': optimizer.state_dict(),
                        'scheduler': scheduler.state_dict(),
                        'iter': num_iter,
                        'current_epoch': epochId
                    }, snapshot_name)
            if num_iter % val_after == 0:
                print('Validation...')
                evaluate(val_labels, val_output_name, val_images_folder, net)
                net.train()
def train(prepared_train_labels, train_images_folder, num_refinement_stages,
          base_lr, batch_size, batches_per_iter, num_workers, checkpoint_path,
          weights_only, from_mobilenet, checkpoints_folder, log_after,
          val_labels, val_images_folder, val_output_name, checkpoint_after,
          val_after):
    net = PoseEstimationWithMobileNet(num_refinement_stages)

    stride = 8
    sigma = 7
    path_thickness = 1
    dataset = CocoTrainDataset(prepared_train_labels,
                               train_images_folder,
                               stride,
                               sigma,
                               path_thickness,
                               transform=transforms.Compose([
                                   ConvertKeypoints(),
                                   Scale(),
                                   Rotate(pad=(128, 128, 128)),
                                   CropPad(pad=(128, 128, 128)),
                                   Flip()
                               ]))
    train_loader = DataLoader(dataset,
                              batch_size=batch_size,
                              shuffle=True,
                              num_workers=num_workers)

    optimizer = optim.Adam([
        {
            'params': get_parameters_conv(net.model, 'weight')
        },
        {
            'params': get_parameters_conv_depthwise(net.model, 'weight'),
            'weight_decay': 0
        },
        {
            'params': get_parameters_bn(net.model, 'weight'),
            'weight_decay': 0
        },
        {
            'params': get_parameters_bn(net.model, 'bias'),
            'lr': base_lr * 2,
            'weight_decay': 0
        },
        {
            'params': get_parameters_conv(net.cpm, 'weight'),
            'lr': base_lr
        },
        {
            'params': get_parameters_conv(net.cpm, 'bias'),
            'lr': base_lr * 2,
            'weight_decay': 0
        },
        {
            'params': get_parameters_conv_depthwise(net.cpm, 'weight'),
            'weight_decay': 0
        },
        {
            'params': get_parameters_conv(net.initial_stage, 'weight'),
            'lr': base_lr
        },
        {
            'params': get_parameters_conv(net.initial_stage, 'bias'),
            'lr': base_lr * 2,
            'weight_decay': 0
        },
        {
            'params': get_parameters_conv(net.refinement_stages, 'weight'),
            'lr': base_lr * 4
        },
        {
            'params': get_parameters_conv(net.refinement_stages, 'bias'),
            'lr': base_lr * 8,
            'weight_decay': 0
        },
        {
            'params': get_parameters_bn(net.refinement_stages, 'weight'),
            'weight_decay': 0
        },
        {
            'params': get_parameters_bn(net.refinement_stages, 'bias'),
            'lr': base_lr * 2,
            'weight_decay': 0
        },
    ],
                           lr=base_lr,
                           weight_decay=5e-4)

    num_iter = 0
    current_epoch = 0
    drop_after_epoch = [100, 200, 260]
    scheduler = optim.lr_scheduler.MultiStepLR(optimizer,
                                               milestones=drop_after_epoch,
                                               gamma=0.333)
    if checkpoint_path:
        checkpoint = torch.load(checkpoint_path)

        if from_mobilenet:
            load_from_mobilenet(net, checkpoint)
        else:
            load_state(net, checkpoint)
            if not weights_only:
                optimizer.load_state_dict(checkpoint['optimizer'])
                scheduler.load_state_dict(checkpoint['scheduler'])
                num_iter = checkpoint['iter']
                current_epoch = checkpoint['current_epoch']
                print("optimizer LR")
                for param_group in optimizer.param_groups:
                    print(param_group['lr'])

                for state in optimizer.state.values():
                    for k, v in state.items():
                        if isinstance(v, torch.Tensor):
                            state[k] = v.cuda()

    net = DataParallel(net).cuda()
    net.train()

    from DGPT.Visualize.Viz import Viz
    viz = Viz(dict(env="refine"))

    for epochId in range(current_epoch, 280):
        # scheduler.step()
        total_losses = [0, 0] * (num_refinement_stages + 1
                                 )  # heatmaps loss, paf loss per stage
        batch_per_iter_idx = 0
        for batch_data in train_loader:
            if batch_per_iter_idx == 0:
                optimizer.zero_grad()

            images = batch_data['image'].cuda()
            keypoint_masks = batch_data['keypoint_mask'].cuda()
            paf_masks = batch_data['paf_mask'].cuda()
            keypoint_maps = batch_data['keypoint_maps'].cuda()
            paf_maps = batch_data['paf_maps'].cuda()

            images = preprocess(images)

            stages_output = net(images)

            losses = []
            for loss_idx in range(len(total_losses) // 2):
                losses.append(
                    l2_loss(stages_output[loss_idx * 2], keypoint_maps,
                            keypoint_masks, images.shape[0]))
                losses.append(
                    l2_loss(stages_output[loss_idx * 2 + 1], paf_maps,
                            paf_masks, images.shape[0]))
                total_losses[loss_idx *
                             2] += losses[-2].item() / batches_per_iter
                total_losses[loss_idx * 2 +
                             1] += losses[-1].item() / batches_per_iter

            loss = losses[0]
            for loss_idx in range(1, len(losses)):
                loss += losses[loss_idx]
            loss /= batches_per_iter
            loss.backward()

            viz.draw_line(num_iter, loss.item(), "Loss")

            batch_per_iter_idx += 1
            if batch_per_iter_idx == batches_per_iter:
                optimizer.step()
                batch_per_iter_idx = 0
                num_iter += 1
                scheduler.step()
            else:
                continue

            if num_iter % log_after == 0:
                print('Iter: {}'.format(num_iter))
                for loss_idx in range(len(total_losses) // 2):
                    print('\n'.join([
                        'stage{}_pafs_loss:     {}',
                        'stage{}_heatmaps_loss: {}'
                    ]).format(loss_idx + 1,
                              total_losses[loss_idx * 2 + 1] / log_after,
                              loss_idx + 1,
                              total_losses[loss_idx * 2] / log_after))
                for loss_idx in range(len(total_losses)):
                    total_losses[loss_idx] = 0

                xx = images[:1, ...].detach()  #.clone()
                hh = keypoint_maps[:1, ...].detach()  #.clone()
                mm = keypoint_masks[:1, ...].detach()  #.clone()

                print(xx.shape, hh.shape, mm.shape)

                hh = hh.squeeze(0).reshape(19, 1, hh.shape[2], hh.shape[3])
                mm = mm.squeeze(0).reshape(19, 1, hh.shape[2], hh.shape[3])

                viz.draw_images(xx, "input1")
                viz.draw_images(hh, "input1_heatmap")
                viz.draw_images(mm, "input1_mask")

                oh = stages_output[-2].detach()[:1, :-1, ...]
                oh = oh.reshape(oh.shape[1], 1, oh.shape[2], oh.shape[3])
                viz.draw_images(oh, "output1_heatmap")

            if num_iter % checkpoint_after == 0:
                snapshot_name = '{}/checkpoint_iter_{}.pth'.format(
                    checkpoints_folder, num_iter)
                torch.save(
                    {
                        'state_dict': net.module.state_dict(),
                        'optimizer': optimizer.state_dict(),
                        'scheduler': scheduler.state_dict(),
                        'iter': num_iter,
                        'current_epoch': epochId
                    }, snapshot_name)
            if num_iter % val_after == 0:
                print('Validation...')
                evaluate(val_labels, val_output_name, val_images_folder, net)
                net.train()