def create_heatmap_representations(self, source_image, kp_driving_value, kp_source_value):
        """
        Eq 6. in the paper H_k(z)
        """
        spatial_size = source_image.shape[2:]
        gaussian_driving = kp2gaussian(kp_driving_value, spatial_size=spatial_size, kp_variance=self.kp_variance)
        gaussian_source = kp2gaussian(kp_source_value, spatial_size=spatial_size, kp_variance=self.kp_variance)
        heatmap = gaussian_driving - gaussian_source

        #adding background feature
        zeros = torch.zeros(heatmap.shape[0], 1, spatial_size[0], spatial_size[1]).type(heatmap.type())
        heatmap = torch.cat([zeros, heatmap], dim=1)
        heatmap = heatmap.unsqueeze(2)
        return heatmap
Beispiel #2
0
    def create_heatmap_representations(self, source_image, kp_driving,
                                       kp_source):
        """
        Eq 6. in the paper H_k(z)
        """
        spatial_size = source_image.shape[2:]
        # TODO:空余时间理解下这部分的 kp 的高斯变换(猜测是把 key point 的权重用一个高斯分布表示)
        gaussian_driving = kp2gaussian(kp_driving,
                                       spatial_size=spatial_size,
                                       kp_variance=self.kp_variance)
        gaussian_source = kp2gaussian(kp_source,
                                      spatial_size=spatial_size,
                                      kp_variance=self.kp_variance)
        heatmap = gaussian_driving - gaussian_source

        #adding background feature
        zeros = torch.zeros(heatmap.shape[0], 1, spatial_size[0],
                            spatial_size[1]).type(heatmap.type())
        heatmap = torch.cat([zeros, heatmap], dim=1)
        heatmap = heatmap.unsqueeze(2)
        return heatmap
    def create_heatmap_representations(self, source_image, kp_driving,
                                       kp_source):
        """
        Eq 6. in the paper H_k(z)
        """
        spatial_size = source_image.shape[2:]
        gaussian_driving = kp2gaussian(kp_driving,
                                       spatial_size=spatial_size,
                                       kp_variance=self.kp_variance)
        gaussian_source = kp2gaussian(kp_source,
                                      spatial_size=spatial_size,
                                      kp_variance=self.kp_variance)
        heatmap = gaussian_driving - gaussian_source

        # adding background feature
        zeros = paddle.to_tensor(
            np.zeros((heatmap.shape[0], 1, spatial_size[0], spatial_size[1]),
                     dtype=np.float32))
        heatmap = paddle.concat([zeros, heatmap], axis=1)
        heatmap = heatmap.unsqueeze(2)
        return heatmap
    def forward(self, x, kp=None):
        feature_maps = []
        out = x
        if self.use_kp:
            heatmap = kp2gaussian(kp, x.shape[2:], self.kp_variance)
            out = torch.cat([out, heatmap], dim=1)

        for down_block in self.down_blocks:
            feature_maps.append(down_block(out))
            out = feature_maps[-1]
        prediction_map = self.conv(out)

        return feature_maps, prediction_map
Beispiel #5
0
 def forward(self, x, kp=None):
     feature_maps = []
     out = x
     if self.use_kp:
         heatmap = kp2gaussian(kp, x.shape[2:], self.kp_variance)
         out = fluid.layers.concat([out, heatmap], axis=1)
     for down_block in self.down_blocks:
         feature_maps.append(down_block(out))
         out = feature_maps[-1]
     if self.sn is not None:
         self.conv.weight.set_value(self.sn(self.conv.parameters()[0]))
     prediction_map = self.conv(out)
     return feature_maps, prediction_map
Beispiel #6
0
    def create_heatmap_representations(self,
                                       source_image,
                                       kp_driving,
                                       kp_source,
                                       oval=False):
        """
        Eq 6. in the paper H_k(z)
        """
        spatial_size = source_image.shape[2:]
        if not oval:
            gaussian_driving = kp2gaussian(kp_driving,
                                           spatial_size=spatial_size,
                                           kp_variance=self.kp_variance)
            gaussian_source = kp2gaussian(kp_source,
                                          spatial_size=spatial_size,
                                          kp_variance=self.kp_variance)
        else:  #modified
            gaussian_driving = kp2ESgaussian(kp_driving,
                                             spatial_size=spatial_size,
                                             kp_variance_1=self.kp_variance,
                                             kp_variance_2=self.kp_variance *
                                             5)  # added
            gaussian_source = kp2ESgaussian(kp_source,
                                            spatial_size=spatial_size,
                                            kp_variance_1=self.kp_variance,
                                            kp_variance_2=self.kp_variance *
                                            5)  # added

        heatmap = gaussian_driving - gaussian_source

        #adding background feature
        zeros = torch.zeros(heatmap.shape[0], 1, spatial_size[0],
                            spatial_size[1]).type(heatmap.type())
        heatmap = torch.cat([zeros, heatmap], dim=1)
        heatmap = heatmap.unsqueeze(2)
        return heatmap