Beispiel #1
0
 def __init__(self, data_shape, hidden_size, latent_size, num_res_block,
              num_mode, controller_rate):
     super().__init__()
     self.encoded_shape = (hidden_size[-1],
                           data_shape[1] // (2**len(hidden_size)),
                           data_shape[2] // (2**len(hidden_size)))
     self.linear = nn.Sequential(
         MultimodalController(latent_size, num_mode, controller_rate),
         Wrapper(nn.Linear(latent_size,
                           np.prod(self.encoded_shape).item())),
         Wrapper(nn.BatchNorm1d(np.prod(self.encoded_shape).item())),
         Wrapper(nn.ReLU(inplace=True)),
     )
     blocks = [
         MultimodalController(hidden_size[-1], num_mode, controller_rate)
     ]
     for i in range(num_res_block):
         blocks.append(ResBlock(hidden_size[-1], num_mode, controller_rate))
     for i in range(len(hidden_size) - 1, 0, -1):
         blocks.extend([
             Wrapper(
                 nn.ConvTranspose2d(hidden_size[i], hidden_size[i - 1], 4,
                                    2, 1)),
             Wrapper(nn.BatchNorm2d(hidden_size[i - 1])),
             Wrapper(nn.ReLU(inplace=True)),
             MultimodalController(hidden_size[i - 1], num_mode,
                                  controller_rate)
         ])
     blocks.extend([
         Wrapper(nn.ConvTranspose2d(hidden_size[0], data_shape[0], 4, 2,
                                    1)),
         Wrapper(nn.Sigmoid())
     ])
     self.blocks = nn.Sequential(*blocks)
 def __init__(self, input_size, output_size, num_mode, controller_rate,
              stride):
     super().__init__()
     self.mc_1 = MultimodalController(input_size, num_mode, controller_rate)
     self.mc_2 = MultimodalController(output_size, num_mode,
                                      controller_rate)
     self.conv = nn.Sequential(
         Wrapper(nn.BatchNorm2d(input_size)),
         Wrapper(nn.ReLU()),
         Wrapper(nn.Upsample(scale_factor=stride, mode='nearest')),
         self.mc_1,
         Wrapper(nn.Conv2d(input_size, output_size, 3, 1, 1)),
         Wrapper(nn.BatchNorm2d(output_size)),
         Wrapper(nn.ReLU()),
         self.mc_2,
         Wrapper(nn.Conv2d(output_size, output_size, 3, 1, 1)),
     )
     if stride > 1:
         self.shortcut = nn.Sequential(
             Wrapper(nn.Upsample(scale_factor=stride,
                                 mode='nearest')), self.mc_1,
             Wrapper(nn.Conv2d(input_size, output_size, 1, 1, 0)))
     elif input_size != output_size:
         self.shortcut = nn.Sequential(
             self.mc_1, nn.Conv2d(input_size, output_size, 1, 1, 0))
     else:
         self.shortcut = nn.Sequential()
Beispiel #3
0
 def __init__(self, hidden_size, num_mode, controller_rate):
     super().__init__()
     self.conv = nn.Sequential(
         Wrapper(nn.Conv2d(hidden_size, hidden_size, 3, 1, 1)),
         Wrapper(nn.BatchNorm2d(hidden_size)),
         Wrapper(nn.ReLU(inplace=True)),
         MultimodalController(hidden_size, num_mode, controller_rate),
         Wrapper(nn.Conv2d(hidden_size, hidden_size, 3, 1, 1)),
         Wrapper(nn.BatchNorm2d(hidden_size)),
         MultimodalController(hidden_size, num_mode, controller_rate),
     )
     self.activation = Wrapper(nn.ReLU(inplace=True))
 def __init__(self, data_shape, hidden_size, num_mode, controller_rate):
     super().__init__()
     self.data_shape = data_shape
     blocks = [
         FirstDisResBlock(data_shape[0], hidden_size[0], num_mode,
                          controller_rate)
     ]
     if cfg['data_name'] in ['CIFAR10', 'CIFAR100']:
         for i in range(len(hidden_size) - 3):
             blocks.append(
                 DisResBlock(hidden_size[i],
                             hidden_size[i + 1],
                             num_mode,
                             controller_rate,
                             stride=2))
         blocks.extend([
             DisResBlock(hidden_size[-3],
                         hidden_size[-2],
                         num_mode,
                         controller_rate,
                         stride=1),
             DisResBlock(hidden_size[-2],
                         hidden_size[-1],
                         num_mode,
                         controller_rate,
                         stride=1),
             Wrapper(nn.ReLU()),
             MultimodalController(hidden_size[-1], num_mode,
                                  controller_rate),
             Wrapper(GlobalSumPooling()),
             Wrapper(nn.Linear(hidden_size[-1], 1))
         ])
     else:
         for i in range(len(hidden_size) - 2):
             blocks.append(
                 DisResBlock(hidden_size[i],
                             hidden_size[i + 1],
                             num_mode,
                             controller_rate,
                             stride=2))
         blocks.extend([
             DisResBlock(hidden_size[-2],
                         hidden_size[-1],
                         num_mode,
                         controller_rate,
                         stride=1),
             Wrapper(nn.ReLU()),
             MultimodalController(hidden_size[-1], num_mode,
                                  controller_rate),
             Wrapper(GlobalSumPooling()),
             Wrapper(nn.Linear(hidden_size[-1], 1))
         ])
     self.blocks = nn.Sequential(*blocks)
Beispiel #5
0
 def __init__(self, input_size, hidden_size=512, affine=True, num_mode=None, controller_rate=None):
     super().__init__()
     self.affine = affine
     self.net = nn.Sequential(
         Wrapper(nn.Conv2d(input_size // 2, hidden_size, 3, padding=1)),
         Wrapper(ActNorm(hidden_size, logdet=False)),
         Wrapper(nn.ReLU(inplace=True)),
         MultimodalController(hidden_size, num_mode, controller_rate),
         Wrapper(nn.Conv2d(hidden_size, hidden_size, 1)),
         Wrapper(ActNorm(hidden_size, logdet=False)),
         Wrapper(nn.ReLU(inplace=True)),
         MultimodalController(hidden_size, num_mode, controller_rate),
         Wrapper(ZeroConv2d(hidden_size, input_size if self.affine else input_size // 2)),
     )
     self.net[0].module.weight.data.normal_(0, 0.05)
     self.net[0].module.bias.data.zero_()
     self.net[4].module.weight.data.normal_(0, 0.05)
     self.net[4].module.bias.data.zero_()
 def __init__(self, input_size, output_size, num_mode, controller_rate):
     super().__init__()
     self.mc_1 = MultimodalController(output_size, num_mode,
                                      controller_rate)
     self.conv = nn.Sequential(
         Wrapper(nn.Conv2d(input_size, output_size, 3, 1, 1)),
         Wrapper(nn.ReLU()),
         self.mc_1,
         Wrapper(nn.Conv2d(output_size, output_size, 3, 1, 1)),
         Wrapper(nn.AvgPool2d(2)),
     )
     self.shortcut = nn.Sequential(
         Wrapper(nn.Conv2d(input_size, output_size, 1, 1, 0)),
         Wrapper(nn.AvgPool2d(2)),
     )
 def __init__(self, data_shape, latent_size, hidden_size, num_mode,
              controller_rate):
     super().__init__()
     self.latent_size = latent_size
     self.linear = Wrapper(nn.Linear(latent_size, hidden_size[0] * 4 * 4))
     blocks = []
     for i in range(len(hidden_size) - 1):
         blocks.append(
             GenResBlock(hidden_size[i],
                         hidden_size[i + 1],
                         num_mode,
                         controller_rate,
                         stride=2))
     blocks.extend([
         Wrapper(nn.BatchNorm2d(hidden_size[-1])),
         Wrapper(nn.ReLU()),
         MultimodalController(hidden_size[-1], num_mode, controller_rate),
         Wrapper(nn.Conv2d(hidden_size[-1], data_shape[0], 3, 1, 1)),
         Wrapper(nn.Tanh())
     ])
     self.blocks = nn.Sequential(*blocks)