Beispiel #1
0
def get_loaders(args, pre_transforms, train=True):
    multi_gpu = args.multi_gpu
    local_rank = args.local_rank

    dataset_json = os.path.join(args.input)
    with open(dataset_json) as f:
        datalist = json.load(f)

    total_d = len(datalist)
    datalist = datalist[0:args.limit] if args.limit else datalist
    total_l = len(datalist)

    if multi_gpu:
        datalist = partition_dataset(
            data=datalist,
            num_partitions=dist.get_world_size(),
            even_divisible=True,
            shuffle=True,
            seed=args.seed,
        )[local_rank]

    if train:
        train_datalist, val_datalist = partition_dataset(
            datalist,
            ratios=[args.split, (1 - args.split)],
            shuffle=True,
            seed=args.seed,
        )

        train_ds = PersistentDataset(train_datalist,
                                     pre_transforms,
                                     cache_dir=args.cache_dir)
        train_loader = DataLoader(train_ds,
                                  batch_size=args.batch,
                                  shuffle=True,
                                  num_workers=16)
        logging.info(
            "{}:: Total Records used for Training is: {}/{}/{}".format(
                local_rank, len(train_ds), total_l, total_d))
    else:
        train_loader = None
        val_datalist = datalist

    val_ds = PersistentDataset(val_datalist,
                               pre_transforms,
                               cache_dir=args.cache_dir)
    val_loader = DataLoader(val_ds, batch_size=args.batch, num_workers=8)
    logging.info("{}:: Total Records used for Validation is: {}/{}/{}".format(
        local_rank, len(val_ds), total_l, total_d))

    return train_loader, val_loader
Beispiel #2
0
 def _split_datalist(self, datalist: List[Dict]) -> List[Dict]:
     data = partition_dataset(data=datalist,
                              num_partitions=nfolds,
                              shuffle=True,
                              seed=seed)
     return select_cross_validation_folds(partitions=data,
                                          folds=folds)
 def test_value(self, input_param, result):
     partitions = partition_dataset(**input_param)
     train = select_cross_validation_folds(partitions=partitions,
                                           folds=[0] +
                                           list(range(2, len(partitions))))
     self.assertListEqual(train, result[0])
     val = select_cross_validation_folds(partitions=partitions, folds=1)
     self.assertListEqual(val, result[1])
Beispiel #4
0
 def _generate_data_list(self, dataset_dir):
     data = super()._generate_data_list(dataset_dir)
     return partition_dataset(
         data=data,
         num_partitions=dist.get_world_size(),
         shuffle=self.shuffle,
         seed=0,
         drop_last=False,
         even_divisible=self.shuffle,
     )[dist.get_rank()]
 def _generate_data_list(self, dataset_dir):
     data = super()._generate_data_list(dataset_dir)
     # partition dataset based on current rank number, every rank trains with its own data
     # it can avoid duplicated caching content in each rank, but will not do global shuffle before every epoch
     return partition_dataset(
         data=data,
         num_partitions=dist.get_world_size(),
         shuffle=self.shuffle,
         seed=0,
         drop_last=False,
         even_divisible=self.shuffle,
     )[dist.get_rank()]
Beispiel #6
0
    def partition_datalist(self, context: Context, shuffle=False):
        val_split = context.request.get("val_split", 0.0)
        if val_split > 0.0:
            train_datalist, val_datalist = partition_dataset(
                context.datalist,
                ratios=[(1 - val_split), val_split],
                shuffle=shuffle)
        else:
            train_datalist = context.datalist
            val_datalist = []

        if context.local_rank == 0:
            logger.info(f"Total Records for Training: {len(train_datalist)}")
            logger.info(f"Total Records for Validation: {len(val_datalist)}")
        return train_datalist, val_datalist
Beispiel #7
0
    def test_seg_values(self):
        with tempfile.TemporaryDirectory() as tempdir:
            # prepare test datalist file
            test_data = {
                "name":
                "Spleen",
                "description":
                "Spleen Segmentation",
                "labels": {
                    "0": "background",
                    "1": "spleen"
                },
                "training": [
                    {
                        "image": "spleen_19.nii.gz",
                        "label": "spleen_19.nii.gz"
                    },
                    {
                        "image": "spleen_31.nii.gz",
                        "label": "spleen_31.nii.gz"
                    },
                ],
                "test": ["spleen_15.nii.gz", "spleen_23.nii.gz"],
            }
            json_str = json.dumps(test_data)
            file_path = os.path.join(tempdir, "test_data.json")
            with open(file_path, "w") as json_file:
                json_file.write(json_str)

            data_list = DatasetFunc(data=file_path,
                                    func=load_decathlon_datalist,
                                    data_list_key="training",
                                    base_dir=tempdir)
            # partition dataset for train / validation
            data_partition = DatasetFunc(
                data=data_list,
                func=lambda x, **kwargs: partition_dataset(x, **kwargs)[0],
                num_partitions=2)
            dataset = Dataset(data=data_partition, transform=None)
            self.assertEqual(dataset[0]["image"],
                             os.path.join(tempdir, "spleen_19.nii.gz"))
            self.assertEqual(dataset[0]["label"],
                             os.path.join(tempdir, "spleen_19.nii.gz"))
Beispiel #8
0
def prepare_datalist(args):
    dimensions = args.dimensions
    dataset_json = os.path.join(args.output, 'dataset.json')

    logging.info('Processing dataset...')
    with open(os.path.join(args.dataset_json)) as f:
        datalist = json.load(f)

    datalist = create_dataset(datalist=datalist[args.datalist_key],
                              base_dir=args.dataset_root,
                              output_dir=args.output,
                              dimension=dimensions,
                              pixdim=[1.0] * dimensions,
                              limit=args.limit,
                              relative_path=args.relative_path)

    with open(dataset_json, 'w') as fp:
        json.dump(datalist, fp, indent=2)

    dataset_json = os.path.join(args.output, 'dataset.json')
    with open(dataset_json) as f:
        datalist = json.load(f)
    logging.info('+++ Dataset File: {}'.format(dataset_json))
    logging.info('+++ Total Records: {}'.format(len(datalist)))
    logging.info('')

    train_ds, val_ds = partition_dataset(datalist,
                                         ratios=[args.split, (1 - args.split)],
                                         shuffle=True,
                                         seed=args.seed)
    dataset_json = os.path.join(args.output, 'dataset_0.json')
    with open(dataset_json, 'w') as fp:
        json.dump({'training': train_ds, 'validation': val_ds}, fp, indent=2)

    logging.info('*** Dataset File: {}'.format(dataset_json))
    logging.info('*** Total Records for Training: {}'.format(len(train_ds)))
    logging.info('*** Total Records for Validation: {}'.format(len(val_ds)))

    assert len(train_ds) > 0, "Train Dataset/Records is EMPTY"
    assert len(val_ds) > 0, "Validation Dataset/Records is EMPTY"
Beispiel #9
0
    def _dataset(self, context, datalist, replace_rate=0.25):
        if context.multi_gpu:
            world_size = torch.distributed.get_world_size()
            if len(
                    datalist
            ) // world_size:  # every gpu gets full data when datalist is smaller
                datalist = partition_dataset(
                    data=datalist,
                    num_partitions=world_size,
                    even_divisible=True)[context.local_rank]

        transforms = self._validate_transforms(
            self.train_pre_transforms(context), "Training", "pre")
        dataset = (
            CacheDataset(datalist, transforms)
            if context.dataset_type == "CacheDataset" else
            SmartCacheDataset(datalist, transforms, replace_rate)
            if context.dataset_type == "SmartCacheDataset" else
            PersistentDataset(datalist,
                              transforms,
                              cache_dir=os.path.join(context.cache_dir, "pds"))
            if context.dataset_type == "PersistentDataset" else Dataset(
                datalist, transforms))
        return dataset, datalist
def get_data(args, batch_size=1, mode="train"):
    # get necessary parameters:
    fold = args.fold
    task_id = args.task_id
    root_dir = args.root_dir
    datalist_path = args.datalist_path
    dataset_path = os.path.join(root_dir, task_name[task_id])
    transform_params = (args.pos_sample_num, args.neg_sample_num,
                        args.num_samples)
    multi_gpu_flag = args.multi_gpu

    transform = get_task_transforms(mode, task_id, *transform_params)
    if mode == "test":
        list_key = "test"
    else:
        list_key = "{}_fold{}".format(mode, fold)
    datalist_name = "dataset_task{}.json".format(task_id)

    property_keys = [
        "name",
        "description",
        "reference",
        "licence",
        "tensorImageSize",
        "modality",
        "labels",
        "numTraining",
        "numTest",
    ]

    datalist = load_decathlon_datalist(
        os.path.join(datalist_path, datalist_name), True, list_key,
        dataset_path)

    properties = load_decathlon_properties(
        os.path.join(datalist_path, datalist_name), property_keys)
    if mode in ["validation", "test"]:
        if multi_gpu_flag:
            datalist = partition_dataset(
                data=datalist,
                shuffle=False,
                num_partitions=dist.get_world_size(),
                even_divisible=False,
            )[dist.get_rank()]

        val_ds = CacheDataset(
            data=datalist,
            transform=transform,
            num_workers=4,
        )

        data_loader = DataLoader(
            val_ds,
            batch_size=batch_size,
            shuffle=False,
            num_workers=args.val_num_workers,
        )
    elif mode == "train":
        if multi_gpu_flag:
            datalist = partition_dataset(
                data=datalist,
                shuffle=True,
                num_partitions=dist.get_world_size(),
                even_divisible=True,
            )[dist.get_rank()]

        train_ds = CacheDataset(
            data=datalist,
            transform=transform,
            num_workers=8,
            cache_rate=args.cache_rate,
        )
        data_loader = DataLoader(
            train_ds,
            batch_size=batch_size,
            shuffle=True,
            num_workers=args.train_num_workers,
            drop_last=True,
        )
    else:
        raise ValueError(f"mode should be train, validation or test.")

    return properties, data_loader
def train(args):
    # disable logging for processes except 0 on every node
    if args.local_rank != 0:
        f = open(os.devnull, "w")
        sys.stdout = sys.stderr = f
    elif not os.path.exists(args.dir):
        # create 40 random image, mask paris for training
        print(
            f"generating synthetic data to {args.dir} (this may take a while)")
        os.makedirs(args.dir)
        # set random seed to generate same random data for every node
        np.random.seed(seed=0)
        for i in range(40):
            im, seg = create_test_image_3d(128,
                                           128,
                                           128,
                                           num_seg_classes=1,
                                           channel_dim=-1)
            n = nib.Nifti1Image(im, np.eye(4))
            nib.save(n, os.path.join(args.dir, f"img{i:d}.nii.gz"))
            n = nib.Nifti1Image(seg, np.eye(4))
            nib.save(n, os.path.join(args.dir, f"seg{i:d}.nii.gz"))

    # initialize the distributed training process, every GPU runs in a process
    dist.init_process_group(backend="nccl", init_method="env://")

    images = sorted(glob(os.path.join(args.dir, "img*.nii.gz")))
    segs = sorted(glob(os.path.join(args.dir, "seg*.nii.gz")))
    train_files = [{"img": img, "seg": seg} for img, seg in zip(images, segs)]

    # define transforms for image and segmentation
    train_transforms = Compose([
        LoadImaged(keys=["img", "seg"]),
        AsChannelFirstd(keys=["img", "seg"], channel_dim=-1),
        ScaleIntensityd(keys="img"),
        RandCropByPosNegLabeld(keys=["img", "seg"],
                               label_key="seg",
                               spatial_size=[96, 96, 96],
                               pos=1,
                               neg=1,
                               num_samples=4),
        RandRotate90d(keys=["img", "seg"], prob=0.5, spatial_axes=[0, 2]),
        EnsureTyped(keys=["img", "seg"]),
    ])

    # partition dataset based on current rank number, every rank trains with its own data
    # it can avoid duplicated caching content in each rank, but will not do global shuffle before every epoch
    data_part = partition_dataset(
        data=train_files,
        num_partitions=dist.get_world_size(),
        shuffle=True,
        even_divisible=True,
    )[dist.get_rank()]

    train_ds = SmartCacheDataset(
        data=data_part,
        transform=train_transforms,
        replace_rate=0.2,
        cache_num=
        15,  # we suppose to use 2 ranks in this example, every rank has 20 training images
        num_init_workers=2,
        num_replace_workers=2,
    )
    # use batch_size=2 to load images and use RandCropByPosNegLabeld to generate 2 x 4 images for network training
    train_loader = DataLoader(train_ds,
                              batch_size=2,
                              shuffle=True,
                              num_workers=2,
                              pin_memory=True)

    # create UNet, DiceLoss and Adam optimizer
    device = torch.device(f"cuda:{args.local_rank}")
    torch.cuda.set_device(device)
    model = monai.networks.nets.UNet(
        spatial_dims=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)
    loss_function = monai.losses.DiceLoss(sigmoid=True).to(device)
    optimizer = torch.optim.Adam(model.parameters(), 1e-3)
    # wrap the model with DistributedDataParallel module
    model = DistributedDataParallel(model, device_ids=[device])

    # start a typical PyTorch training
    epoch_loss_values = list()
    # start the replacement thread of SmartCache
    train_ds.start()

    for epoch in range(5):
        print("-" * 10)
        print(f"epoch {epoch + 1}/{5}")
        model.train()
        epoch_loss = 0
        step = 0
        for batch_data in train_loader:
            step += 1
            inputs, labels = batch_data["img"].to(
                device), batch_data["seg"].to(device)
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = loss_function(outputs, labels)
            loss.backward()
            optimizer.step()
            epoch_loss += loss.item()
            epoch_len = math.ceil(len(train_ds) / train_loader.batch_size)
            print(f"{step}/{epoch_len}, train_loss: {loss.item():.4f}")
        epoch_loss /= step
        epoch_loss_values.append(epoch_loss)
        # replace 20% of cache content for next epoch
        train_ds.update_cache()
        print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}")
    # stop replacement thread of SmartCache
    train_ds.shutdown()
    print(f"train completed, epoch losses: {epoch_loss_values}")
    if dist.get_rank() == 0:
        # all processes should see same parameters as they all start from same
        # random parameters and gradients are synchronized in backward passes,
        # therefore, saving it in one process is sufficient
        torch.save(model.state_dict(), "final_model.pth")
    dist.destroy_process_group()
Beispiel #12
0
def compute(args):
    # generate synthetic data for the example
    if args.local_rank == 0 and not os.path.exists(args.dir):
        # create 16 random pred, label paris for evaluation
        print(
            f"generating synthetic data to {args.dir} (this may take a while)")
        os.makedirs(args.dir)
        # if have multiple nodes, set random seed to generate same random data for every node
        np.random.seed(seed=0)
        for i in range(16):
            pred, label = create_test_image_3d(128,
                                               128,
                                               128,
                                               num_seg_classes=1,
                                               channel_dim=-1,
                                               noise_max=0.5)
            n = nib.Nifti1Image(pred, np.eye(4))
            nib.save(n, os.path.join(args.dir, f"pred{i:d}.nii.gz"))
            n = nib.Nifti1Image(label, np.eye(4))
            nib.save(n, os.path.join(args.dir, f"label{i:d}.nii.gz"))

    # initialize the distributed evaluation process, change to NCCL backend if computing on GPU
    dist.init_process_group(backend="gloo", init_method="env://")

    preds = sorted(glob(os.path.join(args.dir, "pred*.nii.gz")))
    labels = sorted(glob(os.path.join(args.dir, "label*.nii.gz")))
    datalist = [{
        "pred": pred,
        "label": label
    } for pred, label in zip(preds, labels)]

    # split data for every subprocess, for example, 16 processes compute in parallel
    data_part = partition_dataset(
        data=datalist,
        num_partitions=dist.get_world_size(),
        shuffle=False,
        even_divisible=False,
    )[dist.get_rank()]

    # define transforms for predictions and labels
    transforms = Compose([
        LoadImaged(keys=["pred", "label"]),
        EnsureChannelFirstd(keys=["pred", "label"]),
        ScaleIntensityd(keys="pred"),
        EnsureTyped(keys=["pred", "label"]),
        AsDiscreted(keys="pred", threshold=0.5),
        KeepLargestConnectedComponentd(keys="pred", applied_labels=[1]),
    ])
    data_part = [transforms(item) for item in data_part]

    # compute metrics for current process
    metric = DiceMetric(include_background=True,
                        reduction="mean",
                        get_not_nans=False)
    metric(y_pred=[i["pred"] for i in data_part],
           y=[i["label"] for i in data_part])
    filenames = [
        item["pred_meta_dict"]["filename_or_obj"] for item in data_part
    ]
    # all-gather results from all the processes and reduce for final result
    result = metric.aggregate().item()
    filenames = string_list_all_gather(strings=filenames)

    if args.local_rank == 0:
        print("mean dice: ", result)
        # generate metrics reports at: output/mean_dice_raw.csv, output/mean_dice_summary.csv, output/metrics.csv
        write_metrics_reports(
            save_dir="./output",
            images=filenames,
            metrics={"mean_dice": result},
            metric_details={"mean_dice": metric.get_buffer()},
            summary_ops="*",
        )

    metric.reset()

    dist.destroy_process_group()
 def test_value(self, input_param, result):
     self.assertListEqual(partition_dataset(**input_param), result)
Beispiel #14
0
 def test_value(self, input_param, result):
     partitions = partition_dataset(**input_param)
     train, val = generate_cross_validation_fold(partitions, fold_idx=1)
     self.assertListEqual(train, result[0])
     self.assertListEqual(val, result[1])
Beispiel #15
0
    def configure(self):
        self.set_device()
        network = UNet(
            dimensions=3,
            in_channels=1,
            out_channels=2,
            channels=(16, 32, 64, 128, 256),
            strides=(2, 2, 2, 2),
            num_res_units=2,
            norm=Norm.BATCH,
        ).to(self.device)
        if self.multi_gpu:
            network = DistributedDataParallel(
                module=network,
                device_ids=[self.device],
                find_unused_parameters=False,
            )

        train_transforms = Compose([
            LoadImaged(keys=("image", "label")),
            EnsureChannelFirstd(keys=("image", "label")),
            Spacingd(keys=("image", "label"),
                     pixdim=[1.0, 1.0, 1.0],
                     mode=["bilinear", "nearest"]),
            ScaleIntensityRanged(
                keys="image",
                a_min=-57,
                a_max=164,
                b_min=0.0,
                b_max=1.0,
                clip=True,
            ),
            CropForegroundd(keys=("image", "label"), source_key="image"),
            RandCropByPosNegLabeld(
                keys=("image", "label"),
                label_key="label",
                spatial_size=(96, 96, 96),
                pos=1,
                neg=1,
                num_samples=4,
                image_key="image",
                image_threshold=0,
            ),
            RandShiftIntensityd(keys="image", offsets=0.1, prob=0.5),
            ToTensord(keys=("image", "label")),
        ])
        train_datalist = load_decathlon_datalist(self.data_list_file_path,
                                                 True, "training")
        if self.multi_gpu:
            train_datalist = partition_dataset(
                data=train_datalist,
                shuffle=True,
                num_partitions=dist.get_world_size(),
                even_divisible=True,
            )[dist.get_rank()]
        train_ds = CacheDataset(
            data=train_datalist,
            transform=train_transforms,
            cache_num=32,
            cache_rate=1.0,
            num_workers=4,
        )
        train_data_loader = DataLoader(
            train_ds,
            batch_size=2,
            shuffle=True,
            num_workers=4,
        )
        val_transforms = Compose([
            LoadImaged(keys=("image", "label")),
            EnsureChannelFirstd(keys=("image", "label")),
            ScaleIntensityRanged(
                keys="image",
                a_min=-57,
                a_max=164,
                b_min=0.0,
                b_max=1.0,
                clip=True,
            ),
            CropForegroundd(keys=("image", "label"), source_key="image"),
            ToTensord(keys=("image", "label")),
        ])

        val_datalist = load_decathlon_datalist(self.data_list_file_path, True,
                                               "validation")
        val_ds = CacheDataset(val_datalist, val_transforms, 9, 0.0, 4)
        val_data_loader = DataLoader(
            val_ds,
            batch_size=1,
            shuffle=False,
            num_workers=4,
        )
        post_transform = Compose([
            Activationsd(keys="pred", softmax=True),
            AsDiscreted(
                keys=["pred", "label"],
                argmax=[True, False],
                to_onehot=True,
                n_classes=2,
            ),
        ])
        # metric
        key_val_metric = {
            "val_mean_dice":
            MeanDice(
                include_background=False,
                output_transform=lambda x: (x["pred"], x["label"]),
                device=self.device,
            )
        }
        val_handlers = [
            StatsHandler(output_transform=lambda x: None),
            CheckpointSaver(
                save_dir=self.ckpt_dir,
                save_dict={"model": network},
                save_key_metric=True,
            ),
            TensorBoardStatsHandler(log_dir=self.ckpt_dir,
                                    output_transform=lambda x: None),
        ]
        self.eval_engine = SupervisedEvaluator(
            device=self.device,
            val_data_loader=val_data_loader,
            network=network,
            inferer=SlidingWindowInferer(
                roi_size=[160, 160, 160],
                sw_batch_size=4,
                overlap=0.5,
            ),
            post_transform=post_transform,
            key_val_metric=key_val_metric,
            val_handlers=val_handlers,
            amp=self.amp,
        )

        optimizer = torch.optim.Adam(network.parameters(), self.learning_rate)
        loss_function = DiceLoss(to_onehot_y=True, softmax=True)
        lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                       step_size=5000,
                                                       gamma=0.1)
        train_handlers = [
            LrScheduleHandler(lr_scheduler=lr_scheduler, print_lr=True),
            ValidationHandler(validator=self.eval_engine,
                              interval=self.val_interval,
                              epoch_level=True),
            StatsHandler(tag_name="train_loss",
                         output_transform=lambda x: x["loss"]),
            TensorBoardStatsHandler(
                log_dir=self.ckpt_dir,
                tag_name="train_loss",
                output_transform=lambda x: x["loss"],
            ),
        ]

        self.train_engine = SupervisedTrainer(
            device=self.device,
            max_epochs=self.max_epochs,
            train_data_loader=train_data_loader,
            network=network,
            optimizer=optimizer,
            loss_function=loss_function,
            inferer=SimpleInferer(),
            post_transform=post_transform,
            key_train_metric=None,
            train_handlers=train_handlers,
            amp=self.amp,
        )

        if self.local_rank > 0:
            self.train_engine.logger.setLevel(logging.WARNING)
            self.eval_engine.logger.setLevel(logging.WARNING)
Beispiel #16
0
def main():
    parser = argparse.ArgumentParser(description="training")
    parser.add_argument(
        "--checkpoint",
        type=str,
        default=None,
        help="checkpoint full path",
    )
    parser.add_argument(
        "--factor_ram_cost",
        default=0.0,
        type=float,
        help="factor to determine RAM cost in the searched architecture",
    )
    parser.add_argument(
        "--fold",
        action="store",
        required=True,
        help="fold index in N-fold cross-validation",
    )
    parser.add_argument(
        "--json",
        action="store",
        required=True,
        help="full path of .json file",
    )
    parser.add_argument(
        "--json_key",
        action="store",
        required=True,
        help="selected key in .json data list",
    )
    parser.add_argument(
        "--local_rank",
        required=int,
        help="local process rank",
    )
    parser.add_argument(
        "--num_folds",
        action="store",
        required=True,
        help="number of folds in cross-validation",
    )
    parser.add_argument(
        "--output_root",
        action="store",
        required=True,
        help="output root",
    )
    parser.add_argument(
        "--root",
        action="store",
        required=True,
        help="data root",
    )
    args = parser.parse_args()

    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    if not os.path.exists(args.output_root):
        os.makedirs(args.output_root, exist_ok=True)

    amp = True
    determ = True
    factor_ram_cost = args.factor_ram_cost
    fold = int(args.fold)
    input_channels = 1
    learning_rate = 0.025
    learning_rate_arch = 0.001
    learning_rate_milestones = np.array([0.4, 0.8])
    num_images_per_batch = 1
    num_epochs = 1430  # around 20k iteration
    num_epochs_per_validation = 100
    num_epochs_warmup = 715
    num_folds = int(args.num_folds)
    num_patches_per_image = 1
    num_sw_batch_size = 6
    output_classes = 3
    overlap_ratio = 0.625
    patch_size = (96, 96, 96)
    patch_size_valid = (96, 96, 96)
    spacing = [1.0, 1.0, 1.0]

    print("factor_ram_cost", factor_ram_cost)

    # deterministic training
    if determ:
        set_determinism(seed=0)

    # initialize the distributed training process, every GPU runs in a process
    dist.init_process_group(backend="nccl", init_method="env://")

    # dist.barrier()
    world_size = dist.get_world_size()

    with open(args.json, "r") as f:
        json_data = json.load(f)

    split = len(json_data[args.json_key]) // num_folds
    list_train = json_data[args.json_key][:(
        split * fold)] + json_data[args.json_key][(split * (fold + 1)):]
    list_valid = json_data[args.json_key][(split * fold):(split * (fold + 1))]

    # training data
    files = []
    for _i in range(len(list_train)):
        str_img = os.path.join(args.root, list_train[_i]["image"])
        str_seg = os.path.join(args.root, list_train[_i]["label"])

        if (not os.path.exists(str_img)) or (not os.path.exists(str_seg)):
            continue

        files.append({"image": str_img, "label": str_seg})
    train_files = files

    random.shuffle(train_files)

    train_files_w = train_files[:len(train_files) // 2]
    train_files_w = partition_dataset(data=train_files_w,
                                      shuffle=True,
                                      num_partitions=world_size,
                                      even_divisible=True)[dist.get_rank()]
    print("train_files_w:", len(train_files_w))

    train_files_a = train_files[len(train_files) // 2:]
    train_files_a = partition_dataset(data=train_files_a,
                                      shuffle=True,
                                      num_partitions=world_size,
                                      even_divisible=True)[dist.get_rank()]
    print("train_files_a:", len(train_files_a))

    # validation data
    files = []
    for _i in range(len(list_valid)):
        str_img = os.path.join(args.root, list_valid[_i]["image"])
        str_seg = os.path.join(args.root, list_valid[_i]["label"])

        if (not os.path.exists(str_img)) or (not os.path.exists(str_seg)):
            continue

        files.append({"image": str_img, "label": str_seg})
    val_files = files
    val_files = partition_dataset(data=val_files,
                                  shuffle=False,
                                  num_partitions=world_size,
                                  even_divisible=False)[dist.get_rank()]
    print("val_files:", len(val_files))

    # network architecture
    device = torch.device(f"cuda:{args.local_rank}")
    torch.cuda.set_device(device)

    train_transforms = Compose([
        LoadImaged(keys=["image", "label"]),
        EnsureChannelFirstd(keys=["image", "label"]),
        Orientationd(keys=["image", "label"], axcodes="RAS"),
        Spacingd(keys=["image", "label"],
                 pixdim=spacing,
                 mode=("bilinear", "nearest"),
                 align_corners=(True, True)),
        CastToTyped(keys=["image"], dtype=(torch.float32)),
        ScaleIntensityRanged(keys=["image"],
                             a_min=-87.0,
                             a_max=199.0,
                             b_min=0.0,
                             b_max=1.0,
                             clip=True),
        CastToTyped(keys=["image", "label"], dtype=(np.float16, np.uint8)),
        CopyItemsd(keys=["label"], times=1, names=["label4crop"]),
        Lambdad(
            keys=["label4crop"],
            func=lambda x: np.concatenate(tuple([
                ndimage.binary_dilation(
                    (x == _k).astype(x.dtype), iterations=48).astype(x.dtype)
                for _k in range(output_classes)
            ]),
                                          axis=0),
            overwrite=True,
        ),
        EnsureTyped(keys=["image", "label"]),
        CastToTyped(keys=["image"], dtype=(torch.float32)),
        SpatialPadd(keys=["image", "label", "label4crop"],
                    spatial_size=patch_size,
                    mode=["reflect", "constant", "constant"]),
        RandCropByLabelClassesd(keys=["image", "label"],
                                label_key="label4crop",
                                num_classes=output_classes,
                                ratios=[
                                    1,
                                ] * output_classes,
                                spatial_size=patch_size,
                                num_samples=num_patches_per_image),
        Lambdad(keys=["label4crop"], func=lambda x: 0),
        RandRotated(keys=["image", "label"],
                    range_x=0.3,
                    range_y=0.3,
                    range_z=0.3,
                    mode=["bilinear", "nearest"],
                    prob=0.2),
        RandZoomd(keys=["image", "label"],
                  min_zoom=0.8,
                  max_zoom=1.2,
                  mode=["trilinear", "nearest"],
                  align_corners=[True, None],
                  prob=0.16),
        RandGaussianSmoothd(keys=["image"],
                            sigma_x=(0.5, 1.15),
                            sigma_y=(0.5, 1.15),
                            sigma_z=(0.5, 1.15),
                            prob=0.15),
        RandScaleIntensityd(keys=["image"], factors=0.3, prob=0.5),
        RandShiftIntensityd(keys=["image"], offsets=0.1, prob=0.5),
        RandGaussianNoised(keys=["image"], std=0.01, prob=0.15),
        RandFlipd(keys=["image", "label"], spatial_axis=0, prob=0.5),
        RandFlipd(keys=["image", "label"], spatial_axis=1, prob=0.5),
        RandFlipd(keys=["image", "label"], spatial_axis=2, prob=0.5),
        CastToTyped(keys=["image", "label"],
                    dtype=(torch.float32, torch.uint8)),
        ToTensord(keys=["image", "label"]),
    ])

    val_transforms = Compose([
        LoadImaged(keys=["image", "label"]),
        EnsureChannelFirstd(keys=["image", "label"]),
        Orientationd(keys=["image", "label"], axcodes="RAS"),
        Spacingd(keys=["image", "label"],
                 pixdim=spacing,
                 mode=("bilinear", "nearest"),
                 align_corners=(True, True)),
        CastToTyped(keys=["image"], dtype=(torch.float32)),
        ScaleIntensityRanged(keys=["image"],
                             a_min=-87.0,
                             a_max=199.0,
                             b_min=0.0,
                             b_max=1.0,
                             clip=True),
        CastToTyped(keys=["image", "label"], dtype=(np.float32, np.uint8)),
        EnsureTyped(keys=["image", "label"]),
        ToTensord(keys=["image", "label"])
    ])

    train_ds_a = monai.data.CacheDataset(data=train_files_a,
                                         transform=train_transforms,
                                         cache_rate=1.0,
                                         num_workers=8)
    train_ds_w = monai.data.CacheDataset(data=train_files_w,
                                         transform=train_transforms,
                                         cache_rate=1.0,
                                         num_workers=8)
    val_ds = monai.data.CacheDataset(data=val_files,
                                     transform=val_transforms,
                                     cache_rate=1.0,
                                     num_workers=2)

    # monai.data.Dataset can be used as alternatives when debugging or RAM space is limited.
    # train_ds_a = monai.data.Dataset(data=train_files_a, transform=train_transforms)
    # train_ds_w = monai.data.Dataset(data=train_files_w, transform=train_transforms)
    # val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)

    train_loader_a = ThreadDataLoader(train_ds_a,
                                      num_workers=0,
                                      batch_size=num_images_per_batch,
                                      shuffle=True)
    train_loader_w = ThreadDataLoader(train_ds_w,
                                      num_workers=0,
                                      batch_size=num_images_per_batch,
                                      shuffle=True)
    val_loader = ThreadDataLoader(val_ds,
                                  num_workers=0,
                                  batch_size=1,
                                  shuffle=False)

    # DataLoader can be used as alternatives when ThreadDataLoader is less efficient.
    # train_loader_a = DataLoader(train_ds_a, batch_size=num_images_per_batch, shuffle=True, num_workers=2, pin_memory=torch.cuda.is_available())
    # train_loader_w = DataLoader(train_ds_w, batch_size=num_images_per_batch, shuffle=True, num_workers=2, pin_memory=torch.cuda.is_available())
    # val_loader = DataLoader(val_ds, batch_size=1, shuffle=False, num_workers=2, pin_memory=torch.cuda.is_available())

    dints_space = monai.networks.nets.TopologySearch(
        channel_mul=0.5,
        num_blocks=12,
        num_depths=4,
        use_downsample=True,
        device=device,
    )

    model = monai.networks.nets.DiNTS(
        dints_space=dints_space,
        in_channels=input_channels,
        num_classes=output_classes,
        use_downsample=True,
    )

    model = model.to(device)

    model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)

    post_pred = Compose(
        [EnsureType(),
         AsDiscrete(argmax=True, to_onehot=output_classes)])
    post_label = Compose([EnsureType(), AsDiscrete(to_onehot=output_classes)])

    # loss function
    loss_func = monai.losses.DiceCELoss(
        include_background=False,
        to_onehot_y=True,
        softmax=True,
        squared_pred=True,
        batch=True,
        smooth_nr=0.00001,
        smooth_dr=0.00001,
    )

    # optimizer
    optimizer = torch.optim.SGD(model.weight_parameters(),
                                lr=learning_rate * world_size,
                                momentum=0.9,
                                weight_decay=0.00004)
    arch_optimizer_a = torch.optim.Adam([dints_space.log_alpha_a],
                                        lr=learning_rate_arch * world_size,
                                        betas=(0.5, 0.999),
                                        weight_decay=0.0)
    arch_optimizer_c = torch.optim.Adam([dints_space.log_alpha_c],
                                        lr=learning_rate_arch * world_size,
                                        betas=(0.5, 0.999),
                                        weight_decay=0.0)

    print()

    if torch.cuda.device_count() > 1:
        if dist.get_rank() == 0:
            print("Let's use", torch.cuda.device_count(), "GPUs!")

        model = DistributedDataParallel(model,
                                        device_ids=[device],
                                        find_unused_parameters=True)

    if args.checkpoint != None and os.path.isfile(args.checkpoint):
        print("[info] fine-tuning pre-trained checkpoint {0:s}".format(
            args.checkpoint))
        model.load_state_dict(torch.load(args.checkpoint, map_location=device))
        torch.cuda.empty_cache()
    else:
        print("[info] training from scratch")

    # amp
    if amp:
        from torch.cuda.amp import autocast, GradScaler
        scaler = GradScaler()
        if dist.get_rank() == 0:
            print("[info] amp enabled")

    # start a typical PyTorch training
    val_interval = num_epochs_per_validation
    best_metric = -1
    best_metric_epoch = -1
    epoch_loss_values = list()
    idx_iter = 0
    metric_values = list()

    if dist.get_rank() == 0:
        writer = SummaryWriter(
            log_dir=os.path.join(args.output_root, "Events"))

        with open(os.path.join(args.output_root, "accuracy_history.csv"),
                  "a") as f:
            f.write("epoch\tmetric\tloss\tlr\ttime\titer\n")

    dataloader_a_iterator = iter(train_loader_a)

    start_time = time.time()
    for epoch in range(num_epochs):
        decay = 0.5**np.sum([
            (epoch - num_epochs_warmup) /
            (num_epochs - num_epochs_warmup) > learning_rate_milestones
        ])
        lr = learning_rate * decay
        for param_group in optimizer.param_groups:
            param_group["lr"] = lr

        if dist.get_rank() == 0:
            print("-" * 10)
            print(f"epoch {epoch + 1}/{num_epochs}")
            print("learning rate is set to {}".format(lr))

        model.train()
        epoch_loss = 0
        loss_torch = torch.zeros(2, dtype=torch.float, device=device)
        epoch_loss_arch = 0
        loss_torch_arch = torch.zeros(2, dtype=torch.float, device=device)
        step = 0

        for batch_data in train_loader_w:
            step += 1
            inputs, labels = batch_data["image"].to(
                device), batch_data["label"].to(device)
            if world_size == 1:
                for _ in model.weight_parameters():
                    _.requires_grad = True
            else:
                for _ in model.module.weight_parameters():
                    _.requires_grad = True
            dints_space.log_alpha_a.requires_grad = False
            dints_space.log_alpha_c.requires_grad = False

            optimizer.zero_grad()

            if amp:
                with autocast():
                    outputs = model(inputs)
                    if output_classes == 2:
                        loss = loss_func(torch.flip(outputs, dims=[1]),
                                         1 - labels)
                    else:
                        loss = loss_func(outputs, labels)

                scaler.scale(loss).backward()
                scaler.step(optimizer)
                scaler.update()
            else:
                outputs = model(inputs)
                if output_classes == 2:
                    loss = loss_func(torch.flip(outputs, dims=[1]), 1 - labels)
                else:
                    loss = loss_func(outputs, labels)
                loss.backward()
                optimizer.step()

            epoch_loss += loss.item()
            loss_torch[0] += loss.item()
            loss_torch[1] += 1.0
            epoch_len = len(train_loader_w)
            idx_iter += 1

            if dist.get_rank() == 0:
                print("[{0}] ".format(str(datetime.now())[:19]) +
                      f"{step}/{epoch_len}, train_loss: {loss.item():.4f}")
                writer.add_scalar("train_loss", loss.item(),
                                  epoch_len * epoch + step)

            if epoch < num_epochs_warmup:
                continue

            try:
                sample_a = next(dataloader_a_iterator)
            except StopIteration:
                dataloader_a_iterator = iter(train_loader_a)
                sample_a = next(dataloader_a_iterator)
            inputs_search, labels_search = sample_a["image"].to(
                device), sample_a["label"].to(device)
            if world_size == 1:
                for _ in model.weight_parameters():
                    _.requires_grad = False
            else:
                for _ in model.module.weight_parameters():
                    _.requires_grad = False
            dints_space.log_alpha_a.requires_grad = True
            dints_space.log_alpha_c.requires_grad = True

            # linear increase topology and RAM loss
            entropy_alpha_c = torch.tensor(0.).to(device)
            entropy_alpha_a = torch.tensor(0.).to(device)
            ram_cost_full = torch.tensor(0.).to(device)
            ram_cost_usage = torch.tensor(0.).to(device)
            ram_cost_loss = torch.tensor(0.).to(device)
            topology_loss = torch.tensor(0.).to(device)

            probs_a, arch_code_prob_a = dints_space.get_prob_a(child=True)
            entropy_alpha_a = -((probs_a) * torch.log(probs_a + 1e-5)).mean()
            entropy_alpha_c = -(F.softmax(dints_space.log_alpha_c, dim=-1) * \
                F.log_softmax(dints_space.log_alpha_c, dim=-1)).mean()
            topology_loss = dints_space.get_topology_entropy(probs_a)

            ram_cost_full = dints_space.get_ram_cost_usage(inputs.shape,
                                                           full=True)
            ram_cost_usage = dints_space.get_ram_cost_usage(inputs.shape)
            ram_cost_loss = torch.abs(factor_ram_cost -
                                      ram_cost_usage / ram_cost_full)

            arch_optimizer_a.zero_grad()
            arch_optimizer_c.zero_grad()

            combination_weights = (epoch - num_epochs_warmup) / (
                num_epochs - num_epochs_warmup)

            if amp:
                with autocast():
                    outputs_search = model(inputs_search)
                    if output_classes == 2:
                        loss = loss_func(torch.flip(outputs_search, dims=[1]),
                                         1 - labels_search)
                    else:
                        loss = loss_func(outputs_search, labels_search)

                    loss += combination_weights * ((entropy_alpha_a + entropy_alpha_c) + ram_cost_loss \
                                                    + 0.001 * topology_loss)

                scaler.scale(loss).backward()
                scaler.step(arch_optimizer_a)
                scaler.step(arch_optimizer_c)
                scaler.update()
            else:
                outputs_search = model(inputs_search)
                if output_classes == 2:
                    loss = loss_func(torch.flip(outputs_search, dims=[1]),
                                     1 - labels_search)
                else:
                    loss = loss_func(outputs_search, labels_search)

                loss += 1.0 * (combination_weights * (entropy_alpha_a + entropy_alpha_c) + ram_cost_loss \
                                + 0.001 * topology_loss)

                loss.backward()
                arch_optimizer_a.step()
                arch_optimizer_c.step()

            epoch_loss_arch += loss.item()
            loss_torch_arch[0] += loss.item()
            loss_torch_arch[1] += 1.0

            if dist.get_rank() == 0:
                print(
                    "[{0}] ".format(str(datetime.now())[:19]) +
                    f"{step}/{epoch_len}, train_loss_arch: {loss.item():.4f}")
                writer.add_scalar("train_loss_arch", loss.item(),
                                  epoch_len * epoch + step)

        # synchronizes all processes and reduce results
        dist.barrier()
        dist.all_reduce(loss_torch, op=torch.distributed.ReduceOp.SUM)
        loss_torch = loss_torch.tolist()
        loss_torch_arch = loss_torch_arch.tolist()
        if dist.get_rank() == 0:
            loss_torch_epoch = loss_torch[0] / loss_torch[1]
            print(
                f"epoch {epoch + 1} average loss: {loss_torch_epoch:.4f}, best mean dice: {best_metric:.4f} at epoch {best_metric_epoch}"
            )

            if epoch >= num_epochs_warmup:
                loss_torch_arch_epoch = loss_torch_arch[0] / loss_torch_arch[1]
                print(
                    f"epoch {epoch + 1} average arch loss: {loss_torch_arch_epoch:.4f}, best mean dice: {best_metric:.4f} at epoch {best_metric_epoch}"
                )

        if (epoch + 1) % val_interval == 0:
            torch.cuda.empty_cache()
            model.eval()
            with torch.no_grad():
                metric = torch.zeros((output_classes - 1) * 2,
                                     dtype=torch.float,
                                     device=device)
                metric_sum = 0.0
                metric_count = 0
                metric_mat = []
                val_images = None
                val_labels = None
                val_outputs = None

                _index = 0
                for val_data in val_loader:
                    val_images = val_data["image"].to(device)
                    val_labels = val_data["label"].to(device)

                    roi_size = patch_size_valid
                    sw_batch_size = num_sw_batch_size

                    if amp:
                        with torch.cuda.amp.autocast():
                            pred = sliding_window_inference(
                                val_images,
                                roi_size,
                                sw_batch_size,
                                lambda x: model(x),
                                mode="gaussian",
                                overlap=overlap_ratio,
                            )
                    else:
                        pred = sliding_window_inference(
                            val_images,
                            roi_size,
                            sw_batch_size,
                            lambda x: model(x),
                            mode="gaussian",
                            overlap=overlap_ratio,
                        )
                    val_outputs = pred

                    val_outputs = post_pred(val_outputs[0, ...])
                    val_outputs = val_outputs[None, ...]
                    val_labels = post_label(val_labels[0, ...])
                    val_labels = val_labels[None, ...]

                    value = compute_meandice(y_pred=val_outputs,
                                             y=val_labels,
                                             include_background=False)

                    print(_index + 1, "/", len(val_loader), value)

                    metric_count += len(value)
                    metric_sum += value.sum().item()
                    metric_vals = value.cpu().numpy()
                    if len(metric_mat) == 0:
                        metric_mat = metric_vals
                    else:
                        metric_mat = np.concatenate((metric_mat, metric_vals),
                                                    axis=0)

                    for _c in range(output_classes - 1):
                        val0 = torch.nan_to_num(value[0, _c], nan=0.0)
                        val1 = 1.0 - torch.isnan(value[0, 0]).float()
                        metric[2 * _c] += val0 * val1
                        metric[2 * _c + 1] += val1

                    _index += 1

                # synchronizes all processes and reduce results
                dist.barrier()
                dist.all_reduce(metric, op=torch.distributed.ReduceOp.SUM)
                metric = metric.tolist()
                if dist.get_rank() == 0:
                    for _c in range(output_classes - 1):
                        print(
                            "evaluation metric - class {0:d}:".format(_c + 1),
                            metric[2 * _c] / metric[2 * _c + 1])
                    avg_metric = 0
                    for _c in range(output_classes - 1):
                        avg_metric += metric[2 * _c] / metric[2 * _c + 1]
                    avg_metric = avg_metric / float(output_classes - 1)
                    print("avg_metric", avg_metric)

                    if avg_metric > best_metric:
                        best_metric = avg_metric
                        best_metric_epoch = epoch + 1
                        best_metric_iterations = idx_iter

                    node_a_d, arch_code_a_d, arch_code_c_d, arch_code_a_max_d = dints_space.decode(
                    )
                    torch.save(
                        {
                            "node_a": node_a_d,
                            "arch_code_a": arch_code_a_d,
                            "arch_code_a_max": arch_code_a_max_d,
                            "arch_code_c": arch_code_c_d,
                            "iter_num": idx_iter,
                            "epochs": epoch + 1,
                            "best_dsc": best_metric,
                            "best_path": best_metric_iterations,
                        },
                        os.path.join(args.output_root,
                                     "search_code_" + str(idx_iter) + ".pth"),
                    )
                    print("saved new best metric model")

                    dict_file = {}
                    dict_file["best_avg_dice_score"] = float(best_metric)
                    dict_file["best_avg_dice_score_epoch"] = int(
                        best_metric_epoch)
                    dict_file["best_avg_dice_score_iteration"] = int(idx_iter)
                    with open(os.path.join(args.output_root, "progress.yaml"),
                              "w") as out_file:
                        documents = yaml.dump(dict_file, stream=out_file)

                    print(
                        "current epoch: {} current mean dice: {:.4f} best mean dice: {:.4f} at epoch {}"
                        .format(epoch + 1, avg_metric, best_metric,
                                best_metric_epoch))

                    current_time = time.time()
                    elapsed_time = (current_time - start_time) / 60.0
                    with open(
                            os.path.join(args.output_root,
                                         "accuracy_history.csv"), "a") as f:
                        f.write(
                            "{0:d}\t{1:.5f}\t{2:.5f}\t{3:.5f}\t{4:.1f}\t{5:d}\n"
                            .format(epoch + 1, avg_metric, loss_torch_epoch,
                                    lr, elapsed_time, idx_iter))

                dist.barrier()

            torch.cuda.empty_cache()

    print(
        f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}"
    )

    if dist.get_rank() == 0:
        writer.close()

    dist.destroy_process_group()

    return
Beispiel #17
0
 def partition_datalist(datalist, val_split, shuffle=True):
     if val_split > 0.0:
         return partition_dataset(datalist,
                                  ratios=[(1 - val_split), val_split],
                                  shuffle=shuffle)
     return datalist, []