def test_empty_class_2d(self):
        num_classes = 2
        target = torch.tensor([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0],
                               [0, 0, 0, 0]])

        # add another dimension corresponding to the batch (batch size = 1 here)
        target = target.unsqueeze(0)
        pred_very_good = 1000 * F.one_hot(
            target, num_classes=num_classes).permute(0, 3, 1, 2).float()
        pred_very_poor = 1000 * F.one_hot(
            1 - target, num_classes=num_classes).permute(0, 3, 1, 2).float()

        for w_mode in ["default", "GDL"]:
            # initialize the loss
            loss = GeneralizedWassersteinDiceLoss(dist_matrix=np.array(
                [[0.0, 1.0], [1.0, 0.0]]),
                                                  weighting_mode=w_mode)

            # loss for pred_very_good should be close to 0
            loss_good = float(loss.forward(pred_very_good, target))
            self.assertAlmostEqual(loss_good, 0.0, places=3)

            # loss for pred_very_poor should be close to 1
            loss_poor = float(loss.forward(pred_very_poor, target))
            self.assertAlmostEqual(loss_poor, 1.0, places=3)
    def test_bin_seg_3d(self):
        # define 3d examples
        target = torch.tensor([
            # raw 0
            [[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]],
            # raw 1
            [[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]],
            # raw 2
            [[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]],
        ])

        # add another dimension corresponding to the batch (batch size = 1 here)
        target = target.unsqueeze(0)  # shape (1, H, W, D)
        pred_very_good = 1000 * F.one_hot(target, num_classes=2).permute(
            0, 4, 1, 2, 3).float()
        pred_very_poor = 1000 * F.one_hot(1 - target, num_classes=2).permute(
            0, 4, 1, 2, 3).float()

        for w_mode in ["default", "GDL"]:
            # initialize the loss
            loss = GeneralizedWassersteinDiceLoss(dist_matrix=np.array(
                [[0.0, 1.0], [1.0, 0.0]]),
                                                  weighting_mode=w_mode)

            # mean dice loss for pred_very_good should be close to 0
            loss_good = float(loss.forward(pred_very_good, target))
            self.assertAlmostEqual(loss_good, 0.0, places=3)

            # mean dice loss for pred_very_poor should be close to 1
            loss_poor = float(loss.forward(pred_very_poor, target))
            self.assertAlmostEqual(loss_poor, 1.0, places=3)
Beispiel #3
0
    def test_bin_seg_2d(self):
        target = torch.tensor([[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0],
                               [0, 0, 0, 0]])

        # add another dimension corresponding to the batch (batch size = 1 here)
        target = target.unsqueeze(0)
        pred_very_good = 1000 * F.one_hot(target, num_classes=2).permute(
            0, 3, 1, 2).float()
        pred_very_poor = 1000 * F.one_hot(1 - target, num_classes=2).permute(
            0, 3, 1, 2).float()

        # initialize the loss
        loss = GeneralizedWassersteinDiceLoss(
            dist_matrix=np.array([[0.0, 1.0], [1.0, 0.0]]))

        # the loss for pred_very_good should be close to 0
        loss_good = float(loss.forward(pred_very_good, target))
        self.assertAlmostEqual(loss_good, 0.0, places=3)

        # same test, but with target with a class dimension
        target_4dim = target.unsqueeze(1)
        loss_good = float(loss.forward(pred_very_good, target_4dim))
        self.assertAlmostEqual(loss_good, 0.0, places=3)

        # the loss for pred_very_poor should be close to 1
        loss_poor = float(loss.forward(pred_very_poor, target))
        self.assertAlmostEqual(loss_poor, 1.0, places=3)
    def test_different_target_data_type(self):
        """
        Test if the loss is compatible with all the integer types
        for the target segmentation.
        """
        # define 2d examples
        target = torch.tensor([[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0],
                               [0, 0, 0, 0]])

        # add another dimension corresponding to the batch (batch size = 1 here)
        target = target.unsqueeze(0)  # shape (1, H, W)
        pred_very_good = 1000 * F.one_hot(target, num_classes=2).permute(
            0, 3, 1, 2).float()

        target_uint8 = target.to(torch.uint8)
        target_int8 = target.to(torch.int8)
        target_short = target.short()
        target_int = target.int()
        target_long = target.long()
        target_list = [
            target_uint8, target_int8, target_short, target_int, target_long
        ]

        for w_mode in ["default", "GDL"]:
            # initialize the loss
            loss = GeneralizedWassersteinDiceLoss(dist_matrix=np.array(
                [[0.0, 1.0], [1.0, 0.0]]),
                                                  weighting_mode=w_mode)

            # The test should pass irrespectively of the integer type used
            for t in target_list:
                # the loss for pred_very_good should be close to 0
                loss_good = float(loss.forward(pred_very_good, t))
                self.assertAlmostEqual(loss_good, 0.0, places=3)