Beispiel #1
0
 def test_prob_k_spatial_axes(self):
     rotate = Rotate90(k=2, spatial_axes=(0, 1))
     rotated = rotate(self.imt[0])
     expected = []
     for channel in self.imt[0]:
         expected.append(np.rot90(channel, 2, (0, 1)))
     expected = np.stack(expected)
     self.assertTrue(np.allclose(rotated, expected))
Beispiel #2
0
 def test_rotate90_default(self):
     rotate = Rotate90()
     rotated = rotate(self.imt[0])
     expected = []
     for channel in self.imt[0]:
         expected.append(np.rot90(channel, 1, (0, 1)))
     expected = np.stack(expected)
     self.assertTrue(np.allclose(rotated, expected))
Beispiel #3
0
 def test_k(self):
     rotate = Rotate90(k=2)
     rotated = rotate(self.imt[0])
     expected = list()
     for channel in self.imt[0]:
         expected.append(np.rot90(channel, 2, (0, 1)))
     expected = np.stack(expected)
     self.assertTrue(np.allclose(rotated, expected))
 def test_prob_k_spatial_axes(self):
     rotate = Rotate90(k=2, spatial_axes=(0, 1))
     for p in TEST_NDARRAYS:
         rotated = rotate(p(self.imt[0]))
         expected = [
             np.rot90(channel, 2, (0, 1)) for channel in self.imt[0]
         ]
         expected = np.stack(expected)
         assert_allclose(rotated, p(expected), rtol=1.0e-5, atol=1.0e-8)
 def test_rotate90_default(self):
     rotate = Rotate90()
     for p in TEST_NDARRAYS:
         rotated = rotate(p(self.imt[0]))
         expected = [
             np.rot90(channel, 1, (0, 1)) for channel in self.imt[0]
         ]
         expected = np.stack(expected)
         assert_allclose(rotated, p(expected), rtol=1.0e-5, atol=1.0e-8)
Beispiel #6
0
 def test_rotate90_default(self):
     rotate = Rotate90()
     for p in TEST_NDARRAYS_ALL:
         im = p(self.imt[0])
         rotated = rotate(im)
         test_local_inversion(rotate, rotated, im)
         expected = [
             np.rot90(channel, 1, (0, 1)) for channel in self.imt[0]
         ]
         expected = np.stack(expected)
         assert_allclose(rotated,
                         p(expected),
                         rtol=1.0e-5,
                         atol=1.0e-8,
                         type_test="tensor")
    def test_tranform_randomized(self, input):
        # Compose deterministic and randomized transforms
        transforms = Compose([
            Range("flip")(Flip()),
            Rotate90(),
            Range()(RandAdjustContrast(prob=0.0)),
            Range("random flip")(RandFlip(prob=1.0)),
            ToTensor(),
        ])
        # Apply transforms
        output = transforms(input)

        # Decorate with NVTX Range
        transforms1 = Range()(transforms)
        transforms2 = Range("Transforms2")(transforms)
        transforms3 = Range(name="Transforms3", methods="__call__")(transforms)

        # Apply transforms with Range
        output1 = transforms1(input)
        output2 = transforms2(input)
        output3 = transforms3(input)

        # Check if the outputs are equal
        self.assertIsInstance(output, torch.Tensor)
        self.assertIsInstance(output1, torch.Tensor)
        self.assertIsInstance(output2, torch.Tensor)
        self.assertIsInstance(output3, torch.Tensor)
        np.testing.assert_equal(output.numpy(), output1.numpy())
        np.testing.assert_equal(output.numpy(), output2.numpy())
        np.testing.assert_equal(output.numpy(), output3.numpy())

        # Check if the first randomized is RandAdjustContrast
        for tran in transforms.transforms:
            if isinstance(tran, Randomizable):
                self.assertIsInstance(tran, RandAdjustContrast)
                break