Beispiel #1
0
def updateWeightsByJson(userId, categoryWeights):
    print("invoked")
    catWeights = json.loads(categoryWeights)
    #print(catWeights['nature'])
    incStr = {
        "$inc": {
            "categories.landmark": catWeights['landmark'],
            "categories.nature": catWeights['nature'],
            "categories.shopping": catWeights['shopping'],
            "categories.theatre": catWeights['theatre'],
            "categories.restaurant": catWeights['restaurant']
        }
    }
    #incStr = '''{"$inc":{"'''
    #for key,value in catWeights.items():
    #print (key,value)
    #incStr += "categories."+key+":"+value

    #incStr +='''}'''
    #print(incStr)
    conn = MongoConnection()
    user_coll = conn.getUsersCollection()
    row = user_coll.update_one({"userId": userId}, incStr)
    if (row.acknowledged):
        print("Weights updated successfully")
    return row.acknowledged
Beispiel #2
0
def fetchPlacesbyCategoriesDuration(categories, duration):
    catArr = categories.lower().split(",")
    inQry = {"category": {"$in": catArr}}

    dbConn = MongoConnection()
    places_coll = dbConn.getPlacesCollection()

    places = places_coll.find(inQry)

    locations = []
    validLocations = []
    currDuration = 0
    #print(places.count())
    if (places):
        for aPlace in places:
            locations.append(aPlace)

        shuffleList(locations)
        for aLoc in locations:
            print(aLoc['name'], aLoc['duration'])
            if ((currDuration + aLoc['duration']) < duration):
                currDuration += aLoc['duration']
                validLocations.append(aLoc)
            else:
                break

        print(currDuration)

        print([aPlace['name'] for aPlace in validLocations])
Beispiel #3
0
def fetchUser(userId):
    query = {"userId": userId}

    conn = MongoConnection()

    user_coll = conn.getUsersCollection()
    row = user_coll.find_one(query)

    #print (row)
    return row
Beispiel #4
0
def insertUser(name,
               age,
               gender,
               budget=0,
               duration=0,
               visited={},
               prefCategories=""):
    landmark = nature = shopping = theatre = restaurant = 0

    for aCat in prefCategories.split(","):
        #print(aCat)
        if (aCat == "landmark"):
            landmark = 1
        elif (aCat == "nature"):
            nature = 1
        elif (aCat == "shopping"):
            shopping = 1
        elif (aCat == "theatre"):
            theatre = 1
        else:
            restaurant = 1
    '''print("landmark",landmark)
    print("nature",nature)
    print("shopping",shopping)
    print("theatre",theatre)
    print("restaurant",restaurant)'''

    userId = randint(1000, 9999)
    categories = {
        "landmark": landmark,
        "nature": nature,
        "shopping": shopping,
        "theatre": theatre,
        "restaurant": restaurant
    }
    userDetails = {
        "userId": userId,
        "name": name,
        "age": age,
        "gender": gender,
        "avgBudget": budget,
        "avgDuration": duration,
        "visited": visited,
        "categories": categories
    }

    conn = MongoConnection()
    print(conn.dummy())
    user_coll = conn.getUsersCollection()

    row = user_coll.insert_one(userDetails)
    print(row.inserted_id)
    if (row.acknowledged):
        return userId
Beispiel #5
0
def fetchPlacesByCategories(categories):

    inQry = {"category": {"$in": categories}}

    dbConn = MongoConnection()
    places_coll = dbConn.getPlacesCollection()

    places = places_coll.find(inQry)

    locations = []

    if (places):
        for aPlace in places:
            locations.append(aPlace)
    return shuffleList(locations)
Beispiel #6
0
def updateWeights(userId, landmarkWeight, natureWeight, shopWeight,
                  theatreWeight, restoWeight):
    print("categories.landmark", landmarkWeight, "categories.natureWeight",
          natureWeight, "categories.shopWeight", shopWeight,
          "categories.theatreWeight", theatreWeight, "categories.restoWeight",
          restoWeight)
    incStr = {
        "$inc": {
            "categories.landmark": landmarkWeight,
            "categories.nature": natureWeight,
            "categories.shopping": shopWeight,
            "categories.theatre": theatreWeight,
            "categories.restaurant": restoWeight
        }
    }
    conn = MongoConnection()
    user_coll = conn.getUsersCollection()
    user_coll.update_one({"userId": userId}, incStr)
Beispiel #7
0
def fetchPlacesByCategoriesBudget(categories, budget):
    current_app.logger.info(categories)
    current_app.logger.info(budget)
    query = dict()
    query["category"] = {"$in": categories}
    query["Price"] = {"$lte": budget}
    #print(query)
    dbConn = MongoConnection()
    places_coll = dbConn.getPlacesCollection()
    current_app.logger.info(query)
    places = places_coll.find(query, {
        "_id": 0,
        "suitableAge": 0,
        "location": 0,
        "wayToGetThere": 0
    })

    locations = []

    if (places):
        for aPlace in places:
            locations.append(aPlace)
    return shuffleList(locations)
Beispiel #8
0
def fetchCategoryWeightsForSimilarUsers(age, gender, avgBudget, avgDuration):
    #age = 60
    #avgBudget = '10'
    #avgDuration = '6'
    #gender = 'M'

    match_query = {
        "$match": {
            "age": {
                "$gte": age - 5,
                "$lte": age + 5
            },
            "gender": gender,
            "avgBudget": str(avgBudget + 1),
            "avgDuration": str(avgDuration)
        }
    }
    group_query = {
        "$group": {
            "_id": 0,
            "landmark": {
                "$avg": "$categories.landmark"
            },
            "nature": {
                "$avg": "$categories.nature"
            },
            "restaurant": {
                "$avg": "$categories.restaurant"
            },
            "shopping": {
                "$avg": "$categories.shopping"
            },
            "theatre": {
                "$avg": "$categories.theatre"
            }
        }
    }
    project_query = {
        "$project": {
            "_id": 0,
            "landmark": {
                "$ceil": "$landmark"
            },
            "nature": {
                "$ceil": "$nature"
            },
            "restaurant": {
                "$ceil": "$restaurant"
            },
            "shopping": {
                "$ceil": "$shopping"
            },
            "theatre": {
                "$ceil": "$theatre"
            }
        }
    }
    pipeline = [match_query, group_query]
    current_app.logger.info(pipeline)
    #print(pipeline)
    conn = MongoConnection()
    #sprint(aColl for aColl in conn.db.list_collections())
    user_coll = conn.db[DUMMY_USERS_DB]
    row = user_coll.aggregate(pipeline)
    val = list(row)
    #print(val)
    return val