Beispiel #1
0
    def readSynapseML(self, synapseElement, units="SI units"):
        if 'Physiological Units' in units:  # see pg 219 (sec 13.2) of Book of Genesis
            Vfactor = 1e-3  # V from mV
            Tfactor = 1e-3  # s from ms
            Gfactor = 1e-3  # S from mS
        elif 'SI Units' in units:
            Vfactor = 1.0
            Tfactor = 1.0
            Gfactor = 1.0
        else:
            pu.fatal("Wrong units %s exiting ..." % units)
            sys.exit(1)
        if not moose.exists('/library'):
            moose.Neutral('/library')
        synname = synapseElement.attrib['name']
        if utils.neuroml_debug:
            pu.info("Loading synapse : %s into /library" % synname)
        moosesynapse = moose.SynChan('/library/' + synname)
        doub_exp_syn = synapseElement.find('./{' + self.cml + '}doub_exp_syn')
        moosesynapse.Ek = float(
            doub_exp_syn.attrib['reversal_potential']) * Vfactor
        moosesynapse.Gbar = float(
            doub_exp_syn.attrib['max_conductance']) * Gfactor
        moosesynapse.tau1 = float(
            doub_exp_syn.attrib['rise_time']) * Tfactor  # seconds
        moosesynapse.tau2 = float(
            doub_exp_syn.attrib['decay_time']) * Tfactor  # seconds
        ## The delay and weight can be set only after connecting a spike event generator.
        ## delay and weight are arrays: multiple event messages can be connected to a single synapse

        ## graded synapses are not supported by neuroml, so set to False here,
        ## see my Demo/neuroml/lobster_pyloric/STG_net.py for how to still have graded synapses
        moosesynapse_graded = moose.Mstring(moosesynapse.path + '/graded')
        moosesynapse_graded.value = 'False'
        moosesynapse_mgblock = moose.Mstring(moosesynapse.path + '/mgblockStr')
        moosesynapse_mgblock.value = 'False'
        ## check if STDP synapse is present or not
        stdp_syn = synapseElement.find('./{' + self.cml + '}stdp_syn')
        if stdp_syn is None:
            moosesynhandler = moose.SimpleSynHandler('/library/' + synname +
                                                     '/handler')
        else:
            moosesynhandler = moose.STDPSynHandler('/library/' + synname +
                                                   '/handler')
            moosesynhandler.aPlus0 = float(stdp_syn.attrib['del_weight_ltp'])
            moosesynhandler.aMinus0 = float(stdp_syn.attrib['del_weight_ltd'])
            moosesynhandler.tauPlus = float(stdp_syn.attrib['tau_ltp'])
            moosesynhandler.tauMinus = float(stdp_syn.attrib['tau_ltd'])
            moosesynhandler.weightMax = float(
                stdp_syn.attrib['max_syn_weight'])
            moosesynhandler.weightMin = 0.0
        ## connect the SimpleSynHandler or the STDPSynHandler to the SynChan (double exp)
        moose.connect(moosesynhandler, 'activationOut', moosesynapse,
                      'activation')
Beispiel #2
0
def setupModel():
    '''
    Set up two LIF neurons and connect them by an STDPSynHandler.
    Set up some tables, and reinit MOOSE before simulation.
    '''
    # ###########################################
    # Initialize neuron group
    # ###########################################

    ## two neurons: index 0 will be presynaptic, 1 will be postsynaptic
    network = moose.LIF('network', 2)
    moose.le('/network')
    network.vec.Em = Vrest
    network.vec.thresh = Vt_base
    network.vec.refractoryPeriod = refrT
    network.vec.Rm = R
    network.vec.vReset = Vreset
    network.vec.Cm = tau / R
    network.vec.inject = 0.
    network.vec.initVm = Vrest

    # ###########################################
    # Synaptic model: STDP at each pre and post spike
    # ###########################################

    # Values approx from figure in Scholarpedia article (following Bi and Poo 1998):
    # Jesper Sjoestroem and Wulfram Gerstner (2010) Spike-timing dependent plasticity.
    # Scholarpedia, 5(2):1362., revision #137369
    tauPlus = 10e-3  # s         # Apre time constant
    tauMinus = 10e-3  # s        # Apost time constant
    aPlus0 = 1.0  # at pre, Apre += Apre0
    aMinus0 = 0.25  # at post, Apost += Apost0
    weight = 5e-3  # V           # delta function synapse, adds to Vm

    syn = moose.STDPSynHandler('/network/syn')
    syn.numSynapses = 1  # 1 synapse
    # many pre-synaptic inputs can connect to a synapse
    # synapse onto postsynaptic neuron
    moose.connect(syn, 'activationOut', network.vec[1], 'activation')

    # synapse from presynaptic neuron
    moose.connect(network.vec[0], 'spikeOut', syn.synapse[0], 'addSpike')

    # post-synaptic spikes also needed for STDP
    moose.connect(network.vec[1], 'spikeOut', syn, 'addPostSpike')

    syn.synapse[0].delay = 0.0
    syn.synapse[0].weight = weight  # V
    syn.aPlus0 = aPlus0 * weight  # on every pre-spike, aPlus gets this jump
    # aMinus0 includes learning rate
    # on every pre-spike, aMinus is added to weight
    syn.tauPlus = tauPlus
    syn.aMinus0 = -aMinus0 * weight  # on every post-spike, aMinus gets this jump
    # aMinus0 includes learning rate
    # on every post-spike, aPlus is added to weight
    syn.tauMinus = tauMinus
    syn.weightMax = 2 * weight  # bounds on the weight
    syn.weightMin = 0.

    # ###########################################
    # Setting up tables
    # ###########################################

    Vms = moose.Table('/plotVms', 2)
    moose.connect(network, 'VmOut', Vms, 'input', 'OneToOne')
    spikes = moose.Table('/plotSpikes', 2)
    moose.connect(network, 'spikeOut', spikes, 'input', 'OneToOne')

    # ###########################################
    # Simulate the STDP curve with spaced pre-post spike pairs
    # ###########################################

    dt = 0.5e-5  # s
    # moose simulation
    moose.useClock(0, '/network/syn', 'process')
    moose.useClock(1, '/network', 'process')
    moose.useClock(2, '/plotSpikes', 'process')
    moose.useClock(3, '/plotVms', 'process')
    moose.setClock(0, dt)
    moose.setClock(1, dt)
    moose.setClock(2, dt)
    moose.setClock(3, dt)
    moose.setClock(9, dt)
    moose.reinit()