def _eventStats(self):
        """
			Query a database and return the fractions of normal events, events with warnings, events with errors and total events.
		"""
        import random

        normalEvents = len(
            query(
                self.analysisDB,
                "select AbsEventStart from metadata where ProcessingStatus='normal' order by AbsEventStart ASC"
            ))
        warnEvents = len(
            query(
                self.analysisDB,
                "select AbsEventStart from metadata where ProcessingStatus like 'w%' order by AbsEventStart ASC"
            ))
        errorEvents = len(
            query(
                self.analysisDB,
                "select AbsEventStart from metadata where ProcessingStatus like 'e%' order by AbsEventStart ASC"
            ))
        totalEvents = len(
            query(self.analysisDB, "select ProcessingStatus from metadata"))

        return round(normalEvents / float(totalEvents),
                     3), round(warnEvents / float(totalEvents),
                               3), round(errorEvents / float(totalEvents),
                                         3), totalEvents
Beispiel #2
0
	def _timePerEvent(self):
		q=query(
			self.analysisDB,
			"select ProcessTime from metadata where ProcessingStatus='normal'"
		)

		return round(np.mean(np.hstack(q)),1), round(np.std(np.hstack(q)), 1)
Beispiel #3
0
	def _openChanCurrent(self):
		q=query(
			self.analysisDB,
			"select OpenChCurrent from metadata where ProcessingStatus='normal'"
		)

		return round(np.mean(np.hstack(q)),1), round(np.std(np.hstack(q)), 1)
    def _openChanCurrent(self):
        q = query(
            self.analysisDB,
            "select OpenChCurrent from metadata where ProcessingStatus='normal'"
        )

        return round(np.mean(np.hstack(q)), 1), round(np.std(np.hstack(q)), 1)
Beispiel #5
0
	def _timeseriesSaved(self):
		try:
			q=query(
				self.analysisDB,
				"select TimeSeries from metadata"
			)
			return len(q[0][0]) > 0
		except:
			return False
	def _hist(self):
		q=query(
			self.AnalysisDBFile,
			self.queryString
		)
		x=np.hstack( np.hstack( np.array( q ) ) )
		
		# xmin=np.max([0, np.min(x)])
		xmin=np.min(x)
		xmax=np.max(x)

		return np.array(np.histogram(x, bins=self.numBins, density=self.density))
    def _caprate(self):
        q = np.hstack(
            query(
                self.analysisDB,
                "select AbsEventStart from metadata where ProcessingStatus='normal' order by AbsEventStart ASC"
            ))

        # save the start time of the latest event
        self.lastEventStartTimeSec = q[-1] / 1000

        c = caprate(q)

        return round(c[0], 1), round(c[1], 1)
Beispiel #8
0
	def _caprate(self):
		q=np.hstack(
			query(
				self.analysisDB,
				"select AbsEventStart from metadata where ProcessingStatus='normal' order by AbsEventStart ASC"
			)
		)

		# save the start time of the latest event
		self.lastEventStartTimeSec=q[-1]/1000;
		
		c=caprate(q)

		return round(c[0], 1), round(c[1], 1)
Beispiel #9
0
	def _eventStats(self):
		"""
			Query a database and return the fractions of normal events, events with warnings, events with errors and total events.
		"""
		import random

		normalEvents=len(query(
			self.analysisDB,
			"select AbsEventStart from metadata where ProcessingStatus='normal' order by AbsEventStart ASC"
		))
		warnEvents=len(query(
			self.analysisDB,
			"select AbsEventStart from metadata where ProcessingStatus like 'w%' order by AbsEventStart ASC"
		))
		errorEvents=len(query(
			self.analysisDB,
			"select AbsEventStart from metadata where ProcessingStatus like 'e%' order by AbsEventStart ASC"
		))
		totalEvents=len(query(
			self.analysisDB,
			"select ProcessingStatus from metadata"
		))

		return round(normalEvents/float(totalEvents), 3), round(warnEvents/float(totalEvents), 3), round(errorEvents/float(totalEvents), 3), totalEvents
	def timeSeries(self):
		try:
			q=query(self.analysisDB, self.qstr)[0]
			decimate=self._calculateDecimation(len(q[1]))

			dt=(1./self.FsHz)*decimate

			ydat=np.array(q[1])
			polarity=float(np.sign(np.mean(ydat)))

			ydat=polarity*ydat[::decimate]
			xdat=np.arange(0, dt*len(ydat), dt)

			dat={}
			if q[0]=='normal': 
				if self.fitFuncHnd:
					# xfit=np.arange(0,float((len(q[1]))/self.FsHz), float(1/(100*self.FsHz)))
					xfit=np.arange(0, dt*len(ydat), dt)
					yfit=self.fitFuncHnd( *eval(self.fitFuncArgs) )

				if self.stepFuncHnd:
					# xstep=np.arange(0,float((len(q[1]))/self.FsHz), float(1/(100*self.FsHz)))
					xstep=np.arange(0, dt*len(ydat), dt)
					ystep=self.stepFuncHnd( *eval(self.stepFuncArgs) )

				dat['data'] = [ 
							plotlyWrapper.plotlyTrace(list(xdat), list(ydat), "NormalEvent"),
							plotlyWrapper.plotlyTrace(list(xfit), list(yfit), "NormalEventFit"),
							plotlyWrapper.plotlyTrace(list(xstep), list(ystep), "NormalEventStep")
						]
			elif q[0].startswith('w'):
				dat['data'] = [ plotlyWrapper.plotlyTrace(list(xdat), list(ydat), "WarnEvent") ]
				self.returnMessageJSON['errorText']="WARNING: "+self.errTextObject[q[0]]
			else:
				dat['data'] = [ plotlyWrapper.plotlyTrace(list(xdat), list(ydat), "ErrorEvent") ]
				self.returnMessageJSON['errorText']="ERROR: "+self.errTextObject[q[0]]

			dat['layout']=plotlyWrapper.plotlyLayout("EventViewLayout")
			dat['options']=plotlyWrapper.plotlyOptions()

			self.returnMessageJSON['eventViewPlot']=dat

			self.returnMessageJSON['parameterTable']=self._paramTable(*eval(self.paramTableFuncArgs))

			return self.returnMessageJSON
		except IndexError:
			raise EndOfDataError
Beispiel #11
0
    def _hist2d(self):
        try:
            q = query(self.AnalysisDBFile, self.queryString)

            y, x = np.transpose(np.array(q))

            Y = np.hstack(y)
            X = np.hstack(x)

            xmin = np.max([0, 0.9 * np.min(X)])
            xmax = 1.1 * np.max(X)

            ymin = np.max([0, 0.9 * np.min(Y)])
            ymax = np.min([1, 1.1 * np.max(Y)])

            return np.histogram2d(X,
                                  Y,
                                  bins=(self.numBins, self.numBins),
                                  range=[[xmin, xmax], [ymin, ymax]])
        except ValueError:
            raise QuerySyntaxError("")
Beispiel #12
0
	def _hist2d(self):
		try:
			q=query(
				self.AnalysisDBFile,
				self.queryString
			)

			y,x=np.transpose(np.array(q))
			
			Y=np.hstack(y)
			X=np.hstack(x)

			xmin=np.max([0, 0.9*np.min(X)])
			xmax=1.1*np.max(X)

			ymin=np.max([0, 0.9*np.min(Y)])
			ymax=np.min([1, 1.1*np.max(Y)])
		
			return np.histogram2d(X, Y, bins=(self.numBins, self.numBins), range=[[xmin, xmax], [ymin, ymax]])
		except ValueError:
			raise QuerySyntaxError("")
    def _timePerEvent(self):
        q = query(
            self.analysisDB,
            "select ProcessTime from metadata where ProcessingStatus='normal'")

        return round(np.mean(np.hstack(q)), 1), round(np.std(np.hstack(q)), 1)
 def _timeseriesSaved(self):
     try:
         q = query(self.analysisDB, "select TimeSeries from metadata")
         return len(q[0][0]) > 0
     except:
         return False