Beispiel #1
0
def run(project_dir, gpu_mon, logger, args):
    """
    Runs training of a model in a mpunet project directory.

    Args:
        project_dir: A path to a mpunet project
        gpu_mon: An initialized GPUMonitor object
        logger: A mpunet logging object
        args: argparse arguments
    """
    # Read in hyperparameters from YAML file
    from mpunet.hyperparameters import YAMLHParams
    hparams = YAMLHParams(project_dir + "/train_hparams.yaml", logger=logger)
    validate_hparams(hparams)

    # Wait for PID to terminate before continuing?
    if args.wait_for:
        from mpunet.utils import await_PIDs
        await_PIDs(args.wait_for)

    # Prepare sequence generators and potential model specific hparam changes
    train, val, hparams = get_data_sequences(project_dir=project_dir,
                                             hparams=hparams,
                                             logger=logger,
                                             args=args)

    # Set GPU visibility and create model with MirroredStrategy
    set_gpu(gpu_mon, args)
    import tensorflow as tf
    with tf.distribute.MirroredStrategy().scope():
        model = get_model(project_dir=project_dir,
                          train_seq=train,
                          hparams=hparams,
                          logger=logger,
                          args=args)

        # Get trainer and compile model
        from mpunet.train import Trainer
        trainer = Trainer(model, logger=logger)
        trainer.compile_model(n_classes=hparams["build"].get("n_classes"),
                              reduction=tf.keras.losses.Reduction.NONE,
                              **hparams["fit"])

    # Debug mode?
    if args.debug:
        from tensorflow.python import debug as tfdbg
        from tensorflow.keras import backend as K
        K.set_session(tfdbg.LocalCLIDebugWrapperSession(K.get_session()))

    # Fit the model
    _ = trainer.fit(train=train,
                    val=val,
                    train_im_per_epoch=args.train_images_per_epoch,
                    val_im_per_epoch=args.val_images_per_epoch,
                    hparams=hparams,
                    no_im=args.no_images,
                    **hparams["fit"])
    save_final_weights(model, project_dir, logger)
Beispiel #2
0
def entry_func(args=None):
    # Get parser
    parser = vars(get_parser().parse_args(args))

    # Get parser arguments
    cv_dir = os.path.abspath(parser["CV_dir"])
    out_dir = os.path.abspath(parser["out_dir"])
    create_folders(out_dir)
    await_PID = parser["wait_for"]
    run_split = parser["run_on_split"]
    start_from = parser["start_from"] or 0
    num_jobs = parser["num_jobs"] or 1

    # GPU settings
    num_GPUs = parser["num_GPUs"]
    force_GPU = parser["force_GPU"]
    ignore_GPU = parser["ignore_GPU"]
    monitor_GPUs_every = parser["monitor_GPUs_every"]

    # User input assertions
    _assert_force_and_ignore_gpus(force_GPU, ignore_GPU)
    if run_split:
        _assert_run_split(start_from, monitor_GPUs_every, num_jobs)

    # Wait for PID?
    if await_PID:
        from mpunet.utils import await_PIDs
        await_PIDs(await_PID)

    # Get file paths
    script = os.path.abspath(parser["script_prototype"])
    hparams = os.path.abspath(parser["hparams_prototype"])
    no_hparams = parser["no_hparams"]

    # Get list of folders of CV data to run on
    cv_folders = get_CV_folders(cv_dir)
    if run_split is not None:
        if run_split < 0 or run_split >= len(cv_folders):
            raise ValueError("--run_on_split should be in range [0-{}], "
                             "got {}".format(len(cv_folders) - 1, run_split))
        cv_folders = [cv_folders[run_split]]
        log_appendix = "_split{}".format(run_split)
    else:
        log_appendix = ""

    # Get a logger object
    logger = Logger(base_path="./",
                    active_file="output" + log_appendix,
                    print_calling_method=False,
                    overwrite_existing=True)

    if force_GPU:
        # Only these GPUs fill be chosen from
        from mpunet.utils import set_gpu
        set_gpu(force_GPU)
    if num_GPUs:
        # Get GPU sets (up to the number of splits)
        gpu_sets = get_free_GPU_sets(num_GPUs, ignore_GPU)[:len(cv_folders)]
    elif not num_jobs or num_jobs < 0:
        raise ValueError("Should specify a number of jobs to run in parallel "
                         "with the --num_jobs flag when using 0 GPUs pr. "
                         "process (--num_GPUs=0 was set).")
    else:
        gpu_sets = ["''"] * parser["num_jobs"]

    # Get process pool, lock and GPU queue objects
    lock = Lock()
    gpu_queue = Queue()
    for gpu in gpu_sets:
        gpu_queue.put(gpu)

    procs = []
    if monitor_GPUs_every is not None and monitor_GPUs_every:
        logger("\nOBS: Monitoring GPU pool every %i seconds\n" %
               monitor_GPUs_every)
        # Start a process monitoring new GPU availability over time
        stop_event = Event()
        t = Process(target=monitor_GPUs,
                    args=(monitor_GPUs_every, gpu_queue, num_GPUs, ignore_GPU,
                          gpu_sets, stop_event))
        t.start()
        procs.append(t)
    else:
        stop_event = None
    try:
        for cv_folder in cv_folders[start_from:]:
            gpus = gpu_queue.get()
            t = Process(target=run_sub_experiment,
                        args=(cv_folder, out_dir, script, hparams, no_hparams,
                              gpus, gpu_queue, lock, logger))
            t.start()
            procs.append(t)
            for t in procs:
                if not t.is_alive():
                    t.join()
    except KeyboardInterrupt:
        for t in procs:
            t.terminate()
    if stop_event is not None:
        stop_event.set()
    for t in procs:
        t.join()
Beispiel #3
0
def entry_func(args=None):

    # Project base path
    args = vars(get_argparser().parse_args(args))
    basedir = os.path.abspath(args["project_dir"])
    overwrite = args["overwrite"]
    continue_training = args["continue_training"]
    eval_prob = args["eval_prob"]
    await_PID = args["wait_for"]
    dice_weight = args["dice_weight"]
    print("Fitting fusion model for project-folder: %s" % basedir)

    # Minimum images in validation set before also using training images
    min_val_images = 15

    # Fusion model training params
    epochs = args['epochs']
    fm_batch_size = args["batch_size"]

    # Early stopping params
    early_stopping = args["early_stopping"]

    # Wait for PID?
    if await_PID:
        from mpunet.utils import await_PIDs
        await_PIDs(await_PID)

    # Fetch GPU(s)
    num_GPUs = args["num_GPUs"]
    force_gpu = args["force_GPU"]
    # Wait for free GPU
    if not force_gpu:
        await_and_set_free_gpu(N=num_GPUs, sleep_seconds=120)
    else:
        set_gpu(force_gpu)

    # Get logger
    logger = Logger(base_path=basedir,
                    active_file="train_fusion",
                    overwrite_existing=overwrite)

    # Get YAML hyperparameters
    hparams = YAMLHParams(os.path.join(basedir, "train_hparams.yaml"))

    # Get some key settings
    n_classes = hparams["build"]["n_classes"]

    if hparams["build"]["out_activation"] == "linear":
        # Trained with logit targets?
        hparams["build"][
            "out_activation"] = "softmax" if n_classes > 1 else "sigmoid"

    # Get views
    views = np.load("%s/views.npz" % basedir)["arr_0"]
    del hparams["fit"]["views"]

    # Get weights and set fusion (output) path
    weights = get_best_model("%s/model" % basedir)
    weights_name = os.path.splitext(os.path.split(weights)[-1])[0]
    fusion_weights = "%s/model/fusion_weights/" \
                     "%s_fusion_weights.h5" % (basedir, weights_name)
    create_folders(os.path.split(fusion_weights)[0])

    # Log a few things
    log(logger, hparams, views, weights, fusion_weights)

    # Check if exists already...
    if not overwrite and os.path.exists(fusion_weights):
        from sys import exit
        print("\n[*] A fusion weights file already exists at '%s'."
              "\n    Use the --overwrite flag to overwrite." % fusion_weights)
        exit(0)

    # Load validation data
    images = ImagePairLoader(**hparams["val_data"], logger=logger)
    is_validation = {m.identifier: True for m in images}

    # Define random sets of images to train on simul. (cant be all due
    # to memory constraints)
    image_IDs = [m.identifier for m in images]

    if len(images) < min_val_images:
        # Pick N random training images
        diff = min_val_images - len(images)
        logger("Adding %i training images to set" % diff)

        # Load the training data and pick diff images
        train = ImagePairLoader(**hparams["train_data"], logger=logger)
        indx = np.random.choice(np.arange(len(train)),
                                diff,
                                replace=diff > len(train))

        # Add the images to the image set set
        train_add = [train[i] for i in indx]
        for m in train_add:
            is_validation[m.identifier] = False
            image_IDs.append(m.identifier)
        images.add_images(train_add)

    # Append to length % sub_size == 0
    sub_size = args["images_per_round"]
    rest = int(sub_size * np.ceil(len(image_IDs) / sub_size)) - len(image_IDs)
    if rest:
        image_IDs += list(np.random.choice(image_IDs, rest, replace=False))

    # Shuffle and split
    random.shuffle(image_IDs)
    sets = [
        set(s) for s in np.array_split(image_IDs,
                                       len(image_IDs) / sub_size)
    ]
    assert (contains_all_images(sets, image_IDs))

    # Define fusion model (named 'org' to store reference to orgiginal model if
    # multi gpu model is created below)
    fusion_model = FusionModel(n_inputs=len(views),
                               n_classes=n_classes,
                               weight=dice_weight,
                               logger=logger,
                               verbose=False)

    if continue_training:
        fusion_model.load_weights(fusion_weights)
        print("\n[OBS] CONTINUED TRAINING FROM:\n", fusion_weights)

    import tensorflow as tf
    with tf.distribute.MirroredStrategy().scope():
        # Define model
        unet = init_model(hparams["build"], logger)
        print("\n[*] Loading weights: %s\n" % weights)
        unet.load_weights(weights, by_name=True)

    # Compile the model
    logger("Compiling...")
    metrics = [
        "sparse_categorical_accuracy", sparse_fg_precision, sparse_fg_recall
    ]
    fusion_model.compile(optimizer=Adam(lr=1e-3),
                         loss=fusion_model.loss,
                         metrics=metrics)
    fusion_model._log()

    try:
        _run_fusion_training(sets, logger, hparams, min_val_images,
                             is_validation, views, n_classes, unet,
                             fusion_model, early_stopping, fm_batch_size,
                             epochs, eval_prob, fusion_weights)
    except KeyboardInterrupt:
        pass
    finally:
        if not os.path.exists(os.path.split(fusion_weights)[0]):
            os.mkdir(os.path.split(fusion_weights)[0])
        # Save fusion model weights
        # OBS: Must be original model if multi-gpu is performed!
        fusion_model.save_weights(fusion_weights)
Beispiel #4
0
def run(args):
    cv_dir = os.path.abspath(args.CV_dir)
    # Get list of folders of CV data to run on
    cv_folders = get_CV_folders(cv_dir)
    assert_args(args, n_splits=len(cv_folders))
    out_dir = os.path.abspath(args.out_dir)
    hparams_dir = os.path.abspath(args.hparams_prototype_dir)
    prepare_hparams_dir(hparams_dir)
    create_folders(out_dir)

    # Wait for PID?
    if args.wait_for:
        from mpunet.utils import await_PIDs
        await_PIDs(args.wait_for)

    if args.run_on_split is not None:
        cv_folders = [cv_folders[args.run_on_split]]
        log_appendix = "_split{}".format(args.run_on_split)
    else:
        log_appendix = ""

    # Get a logger object
    logger = Logger(base_path="./",
                    active_file="output" + log_appendix,
                    print_calling_method=False,
                    overwrite_existing=True)

    if args.force_GPU:
        # Only these GPUs fill be chosen from
        from mpunet.utils import set_gpu
        set_gpu(args.force_GPU)
    if args.num_GPUs:
        # Get GPU sets (up to the number of splits)
        gpu_sets = get_free_GPU_sets(args.num_GPUs,
                                     args.ignore_GPU)[:len(cv_folders)]
    elif not args.num_jobs or args.num_jobs < 0:
        raise ValueError("Should specify a number of jobs to run in parallel "
                         "with the --num_jobs flag when using 0 GPUs pr. "
                         "process (--num_GPUs=0 was set).")
    else:
        gpu_sets = ["''"] * args.num_jobs

    # Get process pool, lock and GPU queue objects
    lock = Lock()
    gpu_queue = Queue()
    for gpu in gpu_sets:
        gpu_queue.put(gpu)

    # Get file paths
    script = os.path.abspath(args.script_prototype)

    # Get GPU monitor process
    running_processes, stop_event = start_gpu_monitor_process(
        args, gpu_queue, gpu_sets, logger)

    try:
        for cv_folder in cv_folders[args.start_from:]:
            gpus = gpu_queue.get()
            t = Process(target=run_sub_experiment,
                        args=(cv_folder, out_dir, script, hparams_dir,
                              args.no_hparams, gpus, gpu_queue, lock, logger))
            t.start()
            running_processes.append(t)
            for t in running_processes:
                if not t.is_alive():
                    t.join()
    except KeyboardInterrupt:
        for t in running_processes:
            t.terminate()
    if stop_event is not None:
        stop_event.set()
    for t in running_processes:
        t.join()