def _extrinsics_rt(self, toref, rt=None): r'''Get or set the extrinsics in this model This function represents the pose as a 6-long numpy array that contains a 3-long Rodrigues rotation followed by a 3-long translation in the last row: r = rt[:3] t = rt[3:] R = mrcal.R_from_r(r) The transformation is b <-- R*a + t: import numpysane as nps b = nps.matmult(a, nps.transpose(R)) + t if rt is None: this is a getter; otherwise a setter. toref is a boolean. if toref: then rt maps points in the coord system of THIS camera to the reference coord system. Otherwise in the opposite direction ''' # The internal representation is rt_fromref if rt is None: # getter if not toref: return copy.deepcopy(self._extrinsics) return mrcal.invert_rt(self._extrinsics) # setter if not toref: self._extrinsics = copy.deepcopy(rt) return True self._extrinsics = mrcal.invert_rt(rt) return True
confirm_equal(Rt, invert_Rt(Rt0_ref), msg='invert_Rt result') # in-place Rt0_ref_copy = np.array(Rt0_ref) Rt = mrcal.invert_Rt(Rt0_ref_copy, out=Rt0_ref_copy) confirm_equal(Rt, invert_Rt(Rt0_ref), msg='invert_Rt result written in-place') R = mrcal.invert_R(R0_ref, out=out33) confirm_equal(R, invert_R(R0_ref), msg='invert_R result') # in-place R0_ref_copy = np.array(R0_ref) R = mrcal.invert_R(R0_ref_copy, out=R0_ref_copy) confirm_equal(R, invert_R(R0_ref), msg='invert_R result written in-place') rt = mrcal.invert_rt(rt0_ref, out=out6) confirm_equal(rt, invert_rt(rt0_ref), msg='invert_rt result') # in-place rt0_ref_copy = np.array(rt0_ref) rt = mrcal.invert_rt(rt0_ref_copy, out=rt0_ref_copy) confirm_equal(rt, invert_rt(rt0_ref), msg='invert_rt result written in-place') rt, drt_drt = mrcal.invert_rt(rt0_ref, get_gradients=True, out=(out6, out66)) drt_drt_ref = grad(invert_rt, rt0_ref) confirm_equal(rt, invert_rt(rt0_ref), msg='invert_rt with grad result') confirm_equal(drt_drt, drt_drt_ref, msg='invert_rt drt/drt result') # in-place rt0_ref_copy = np.array(rt0_ref) drt_drt_copy = np.array(drt_drt)
def triangulate_nograd(intrinsics_data0, intrinsics_data1, rt_cam0_ref, rt_cam0_ref_baseline, rt_cam1_ref, rt_ref_frame, rt_ref_frame_baseline, q, lensmodel, stabilize_coords=True): q = nps.atleast_dims(q, -3) rt01 = mrcal.compose_rt(rt_cam0_ref, mrcal.invert_rt(rt_cam1_ref)) # all the v have shape (...,3) vlocal0 = \ mrcal.unproject(q[...,0,:], lensmodel, intrinsics_data0) vlocal1 = \ mrcal.unproject(q[...,1,:], lensmodel, intrinsics_data1) v0 = vlocal0 v1 = \ mrcal.rotate_point_r(rt01[:3], vlocal1) # The triangulated point in the perturbed camera-0 coordinate system. # Calibration-time perturbations move this coordinate system, so to get # a better estimate of the triangulation uncertainty, we try to # transform this to the original camera-0 coordinate system; the # stabilization path below does that. # # shape (..., 3) p_triangulated0 = \ mrcal.triangulate_leecivera_mid2(v0, v1, rt01[3:]) if not stabilize_coords: return p_triangulated0 # Stabilization path. This uses the "true" solution, so I cannot do # this in the field. But I CAN do this in the randomized trials in # the test. And I can use the gradients to propagate the uncertainty # of this computation in the field # # Data flow: # point_cam_perturbed -> point_ref_perturbed -> point_frames # point_frames -> point_ref_baseline -> point_cam_baseline p_cam0_perturbed = p_triangulated0 p_ref_perturbed = mrcal.transform_point_rt(rt_cam0_ref, p_cam0_perturbed, inverted=True) # shape (..., Nframes, 3) p_frames = \ mrcal.transform_point_rt(rt_ref_frame, nps.dummy(p_ref_perturbed,-2), inverted = True) # shape (..., Nframes, 3) p_ref_baseline_all = mrcal.transform_point_rt(rt_ref_frame_baseline, p_frames) # shape (..., 3) p_ref_baseline = np.mean(p_ref_baseline_all, axis=-2) # shape (..., 3) return mrcal.transform_point_rt(rt_cam0_ref_baseline, p_ref_baseline)
v1[0] = 0 el_fov_deg_observed = np.arccos(nps.inner(v0,v1)/(nps.mag(v0)*nps.mag(v1))) * 180./np.pi testutils.confirm_equal(el_fov_deg_observed, el_fov_deg, msg=f'complex stereo: el_fov ({lensmodel})', eps = 0.5) # I examine points somewhere in space. I make sure the rectification maps # transform it properly. And I compute what its az,el and disparity would have # been, and I check the geometric functions pcam0 = np.array((( 1., 2., 12.), (-4., 3., 12.))) qcam0 = mrcal.project( pcam0, *model0.intrinsics() ) pcam1 = mrcal.transform_point_rt(mrcal.invert_rt(rt01), pcam0) qcam1 = mrcal.project( pcam1, *model1.intrinsics() ) prect0 = mrcal.transform_point_Rt( mrcal.invert_Rt(Rt_cam0_rect), pcam0) prect1 = prect0 - Rt01_rectified[3,:] qrect0 = mrcal.project(prect0, *models_rectified[0].intrinsics()) qrect1 = mrcal.project(prect1, *models_rectified[1].intrinsics()) Naz,Nel = models_rectified[0].imagersize() row = np.arange(Naz, dtype=float) col = np.arange(Nel, dtype=float) rectification_maps = mrcal.rectification_maps((model0,model1), models_rectified)
def reproject_perturbed__fit_boards_ref( q, distance, # shape (Ncameras, Nintrinsics) baseline_intrinsics, # shape (Ncameras, 6) baseline_rt_cam_ref, # shape (Nframes, 6) baseline_rt_ref_frame, # shape (2) baseline_calobject_warp, # shape (..., Ncameras, Nintrinsics) query_intrinsics, # shape (..., Ncameras, 6) query_rt_cam_ref, # shape (..., Nframes, 6) query_rt_ref_frame, # shape (..., 2) query_calobject_warp): r'''Reproject by explicitly computing a procrustes fit to align the reference coordinate systems of the two solves. We match up the two sets of chessboard points ''' calobject_height, calobject_width = optimization_inputs_baseline[ 'observations_board'].shape[1:3] # shape (Nsamples, Nh, Nw, 3) if query_calobject_warp.ndim > 1: calibration_object_query = \ nps.cat(*[ mrcal.ref_calibration_object(calobject_width, calobject_height, optimization_inputs_baseline['calibration_object_spacing'], calobject_warp=calobject_warp) \ for calobject_warp in query_calobject_warp] ) else: calibration_object_query = \ mrcal.ref_calibration_object(calobject_width, calobject_height, optimization_inputs_baseline['calibration_object_spacing'], calobject_warp=query_calobject_warp) # shape (Nsamples, Nframes, Nh, Nw, 3) pcorners_ref_query = \ mrcal.transform_point_rt( nps.dummy(query_rt_ref_frame, -2, -2), nps.dummy(calibration_object_query, -4)) # shape (Nh, Nw, 3) calibration_object_baseline = \ mrcal.ref_calibration_object(calobject_width, calobject_height, optimization_inputs_baseline['calibration_object_spacing'], calobject_warp=baseline_calobject_warp) # frames_ref.shape is (Nframes, 6) # shape (Nframes, Nh, Nw, 3) pcorners_ref_baseline = \ mrcal.transform_point_rt( nps.dummy(baseline_rt_ref_frame, -2, -2), calibration_object_baseline) # shape (Nsamples,4,3) Rt_refq_refb = \ mrcal.align_procrustes_points_Rt01( \ # shape (Nsamples,N,3) nps.mv(nps.clump(nps.mv(pcorners_ref_query, -1,0),n=-3),0,-1), # shape (N,3) nps.clump(pcorners_ref_baseline, n=3)) # shape (Ncameras, 3) p_cam_baseline = mrcal.unproject( q, lensmodel, baseline_intrinsics, normalize=True) * distance # shape (Ncameras, 3). In the ref coord system p_ref_baseline = \ mrcal.transform_point_rt( mrcal.invert_rt(baseline_rt_cam_ref), p_cam_baseline ) # shape (Nsamples,Ncameras,3) p_ref_query = \ mrcal.transform_point_Rt(nps.mv(Rt_refq_refb,-3,-4), p_ref_baseline) # shape (..., Ncameras, 3) p_cam_query = \ mrcal.transform_point_rt(query_rt_cam_ref, p_ref_query) # shape (..., Ncameras, 2) q1 = mrcal.project(p_cam_query, lensmodel, query_intrinsics) if q1.shape[-3] == 1: q1 = q1[0, :, :] return q1
def reproject_perturbed__mean_frames( q, distance, # shape (Ncameras, Nintrinsics) baseline_intrinsics, # shape (Ncameras, 6) baseline_rt_cam_ref, # shape (Nframes, 6) baseline_rt_ref_frame, # shape (2) baseline_calobject_warp, # shape (..., Ncameras, Nintrinsics) query_intrinsics, # shape (..., Ncameras, 6) query_rt_cam_ref, # shape (..., Nframes, 6) query_rt_ref_frame, # shape (..., 2) query_calobject_warp): r'''Reproject by computing the mean in the space of frames This is what the uncertainty computation does (as of 2020/10/26). The implied rotation here is aphysical (it is a mean of multiple rotation matrices) ''' # shape (Ncameras, 3) p_cam_baseline = mrcal.unproject( q, lensmodel, baseline_intrinsics, normalize=True) * distance # shape (Ncameras, 3) p_ref_baseline = \ mrcal.transform_point_rt( mrcal.invert_rt(baseline_rt_cam_ref), p_cam_baseline ) if fixedframes: p_ref_query = p_ref_baseline else: # shape (Nframes, Ncameras, 3) # The point in the coord system of all the frames p_frames = mrcal.transform_point_rt( \ nps.dummy(mrcal.invert_rt(baseline_rt_ref_frame),-2), p_ref_baseline) # shape (..., Nframes, Ncameras, 3) p_ref_query_allframes = \ mrcal.transform_point_rt( nps.dummy(query_rt_ref_frame, -2), p_frames ) if args.reproject_perturbed == 'mean-frames': # "Normal" path: I take the mean of all the frame-coord-system # representations of my point if not fixedframes: # shape (..., Ncameras, 3) p_ref_query = np.mean(p_ref_query_allframes, axis=-3) # shape (..., Ncameras, 3) p_cam_query = \ mrcal.transform_point_rt(query_rt_cam_ref, p_ref_query) # shape (..., Ncameras, 2) return mrcal.project(p_cam_query, lensmodel, query_intrinsics) else: # Experimental path: I take the mean of the projections, not the points # in the reference frame # guaranteed that not fixedframes: I asserted this above # shape (..., Nframes, Ncameras, 3) p_cam_query_allframes = \ mrcal.transform_point_rt(nps.dummy(query_rt_cam_ref, -3), p_ref_query_allframes) # shape (..., Nframes, Ncameras, 2) q_reprojected = mrcal.project(p_cam_query_allframes, lensmodel, nps.dummy(query_intrinsics, -3)) if args.reproject_perturbed != 'mean-frames-using-meanq-penalize-big-shifts': return np.mean(q_reprojected, axis=-3) else: # Experiment. Weighted mean to de-emphasize points with huge shifts w = 1. / nps.mag(q_reprojected - q) w = nps.mv(nps.cat(w, w), 0, -1) return \ np.sum(q_reprojected*w, axis=-3) / \ np.sum(w, axis=-3)
p) R_fit = Rt_fit[:3, :] t_fit = Rt_fit[3, :] testutils.confirm_equal(R_fit, R, eps=1e-2, msg='Procrustes fit R') testutils.confirm_equal(t_fit, t, eps=1e-2, msg='Procrustes fit t') R_fit_vectors = \ mrcal.align_procrustes_vectors_R01(nps.matmult( p, nps.transpose(R) ) + noise, p) testutils.confirm_equal(R_fit_vectors, R, eps=1e-2, msg='Procrustes fit R (vectors)') testutils.confirm_equal(mrcal.invert_Rt( mrcal.Rt_from_rt(mrcal.invert_rt(mrcal.rt_from_Rt(Rt)))), Rt, msg='Rt/rt and invert') testutils.confirm_equal(mrcal.compose_Rt(Rt, mrcal.invert_Rt(Rt)), nps.glue(np.eye(3), np.zeros((3, )), axis=-2), msg='compose_Rt') testutils.confirm_equal(mrcal.compose_rt(mrcal.rt_from_Rt(Rt), mrcal.invert_rt( mrcal.rt_from_Rt(Rt))), np.zeros((6, )), msg='compose_rt') testutils.confirm_equal(mrcal.identity_Rt(), nps.glue(np.eye(3), np.zeros((3, )), axis=-2),
def calibration_baseline(model, Ncameras, Nframes, extra_observation_at, object_width_n, object_height_n, object_spacing, extrinsics_rt_fromref_true, calobject_warp_true, fixedframes, testdir, cull_left_of_center=False, allow_nonidentity_cam0_transform=False, range_to_boards=4.0): r'''Compute a calibration baseline as a starting point for experiments This is a perfect, noiseless solve. Regularization IS enabled, and the returned model is at the optimization optimum. So the returned models will not sit exactly at the ground-truth. NOTE: if not fixedframes: the ref frame in the returned optimization_inputs_baseline is NOT the ref frame used by the returned extrinsics and frames arrays. The arrays in optimization_inputs_baseline had to be transformed to reference off camera 0. If the extrinsics of camera 0 are the identity, then the two ref coord systems are the same. To avoid accidental bugs, we have a kwarg allow_nonidentity_cam0_transform, which defaults to False. if not allow_nonidentity_cam0_transform and norm(extrinsics_rt_fromref_true[0]) > 0: raise This logic is here purely for safety. A caller that handles non-identity cam0 transforms has to explicitly say that ARGUMENTS - model: string. 'opencv4' or 'opencv8' or 'splined' - ... ''' if re.match('opencv', model): models_true = ( mrcal.cameramodel(f"{testdir}/data/cam0.opencv8.cameramodel"), mrcal.cameramodel(f"{testdir}/data/cam0.opencv8.cameramodel"), mrcal.cameramodel(f"{testdir}/data/cam1.opencv8.cameramodel"), mrcal.cameramodel(f"{testdir}/data/cam1.opencv8.cameramodel")) if model == 'opencv4': # I have opencv8 models_true, but I truncate to opencv4 models_true for m in models_true: m.intrinsics(intrinsics=('LENSMODEL_OPENCV4', m.intrinsics()[1][:8])) elif model == 'splined': models_true = ( mrcal.cameramodel(f"{testdir}/data/cam0.splined.cameramodel"), mrcal.cameramodel(f"{testdir}/data/cam0.splined.cameramodel"), mrcal.cameramodel(f"{testdir}/data/cam1.splined.cameramodel"), mrcal.cameramodel(f"{testdir}/data/cam1.splined.cameramodel")) else: raise Exception("Unknown lens being tested") models_true = models_true[:Ncameras] lensmodel = models_true[0].intrinsics()[0] Nintrinsics = mrcal.lensmodel_num_params(lensmodel) for i in range(Ncameras): models_true[i].extrinsics_rt_fromref(extrinsics_rt_fromref_true[i]) if not allow_nonidentity_cam0_transform and \ nps.norm2(extrinsics_rt_fromref_true[0]) > 0: raise Exception( "A non-identity cam0 transform was given, but the caller didn't explicitly say that they support this" ) imagersizes = nps.cat(*[m.imagersize() for m in models_true]) # These are perfect intrinsics_true = nps.cat(*[m.intrinsics()[1] for m in models_true]) extrinsics_true_mounted = nps.cat( *[m.extrinsics_rt_fromref() for m in models_true]) x_center = -(Ncameras - 1) / 2. # shapes (Nframes, Ncameras, Nh, Nw, 2), # (Nframes, 4,3) q_true,Rt_ref_board_true = \ mrcal.synthesize_board_observations(models_true, object_width_n, object_height_n, object_spacing, calobject_warp_true, np.array((0., 0., 0., x_center, 0, range_to_boards)), np.array((np.pi/180.*30., np.pi/180.*30., np.pi/180.*20., 2.5, 2.5, range_to_boards/2.0)), Nframes) if extra_observation_at is not None: q_true_extra,Rt_ref_board_true_extra = \ mrcal.synthesize_board_observations(models_true, object_width_n, object_height_n, object_spacing, calobject_warp_true, np.array((0., 0., 0., x_center, 0, extra_observation_at)), np.array((np.pi/180.*30., np.pi/180.*30., np.pi/180.*20., 2.5, 2.5, extra_observation_at/10.0)), Nframes = 1) q_true = nps.glue(q_true, q_true_extra, axis=-5) Rt_ref_board_true = nps.glue(Rt_ref_board_true, Rt_ref_board_true_extra, axis=-3) Nframes += 1 frames_true = mrcal.rt_from_Rt(Rt_ref_board_true) ############# I have perfect observations in q_true. # weight has shape (Nframes, Ncameras, Nh, Nw), weight01 = (np.random.rand(*q_true.shape[:-1]) + 1.) / 2. # in [0,1] weight0 = 0.2 weight1 = 1.0 weight = weight0 + (weight1 - weight0) * weight01 if cull_left_of_center: imagersize = models_true[0].imagersize() for m in models_true[1:]: if np.any(m.imagersize() - imagersize): raise Exception( "I'm assuming all cameras have the same imager size, but this is false" ) weight[q_true[..., 0] < imagersize[0] / 2.] /= 1000. # I want observations of shape (Nframes*Ncameras, Nh, Nw, 3) where each row is # (x,y,weight) observations_true = nps.clump(nps.glue(q_true, nps.dummy(weight, -1), axis=-1), n=2) # Dense observations. All the cameras see all the boards indices_frame_camera = np.zeros((Nframes * Ncameras, 2), dtype=np.int32) indices_frame = indices_frame_camera[:, 0].reshape(Nframes, Ncameras) indices_frame.setfield(nps.outer(np.arange(Nframes, dtype=np.int32), np.ones((Ncameras, ), dtype=np.int32)), dtype=np.int32) indices_camera = indices_frame_camera[:, 1].reshape(Nframes, Ncameras) indices_camera.setfield(nps.outer(np.ones((Nframes, ), dtype=np.int32), np.arange(Ncameras, dtype=np.int32)), dtype=np.int32) indices_frame_camintrinsics_camextrinsics = \ nps.glue(indices_frame_camera, indices_frame_camera[:,(1,)], axis=-1) if not fixedframes: indices_frame_camintrinsics_camextrinsics[:, 2] -= 1 ########################################################################### # p = mrcal.show_geometry(models_true, # frames = frames_true, # object_width_n = object_width_n, # object_height_n = object_height_n, # object_spacing = object_spacing) # sys.exit() # I now reoptimize the perfect-observations problem. Without regularization, # this is a no-op: I'm already at the optimum. With regularization, this will # move us a certain amount (that the test will evaluate). Then I look at # noise-induced motions off this optimization optimum optimization_inputs_baseline = \ dict( intrinsics = copy.deepcopy(intrinsics_true), points = None, observations_board = observations_true, indices_frame_camintrinsics_camextrinsics = indices_frame_camintrinsics_camextrinsics, observations_point = None, indices_point_camintrinsics_camextrinsics = None, lensmodel = lensmodel, calobject_warp = copy.deepcopy(calobject_warp_true), imagersizes = imagersizes, calibration_object_spacing = object_spacing, verbose = False, do_optimize_frames = not fixedframes, do_optimize_intrinsics_core = False if model =='splined' else True, do_optimize_intrinsics_distortions = True, do_optimize_extrinsics = True, do_optimize_calobject_warp = True, do_apply_regularization = True, do_apply_outlier_rejection = False) if fixedframes: # Frames are fixed: each camera has an independent pose optimization_inputs_baseline['extrinsics_rt_fromref'] = \ copy.deepcopy(extrinsics_true_mounted) optimization_inputs_baseline['frames_rt_toref'] = copy.deepcopy( frames_true) else: # Frames are NOT fixed: cam0 is fixed as the reference coord system. I # transform each optimization extrinsics vector to be relative to cam0 optimization_inputs_baseline['extrinsics_rt_fromref'] = \ mrcal.compose_rt(extrinsics_true_mounted[1:,:], mrcal.invert_rt(extrinsics_true_mounted[0,:])) optimization_inputs_baseline['frames_rt_toref'] = \ mrcal.compose_rt(extrinsics_true_mounted[0,:], frames_true) mrcal.optimize(**optimization_inputs_baseline) models_baseline = \ [ mrcal.cameramodel( optimization_inputs = optimization_inputs_baseline, icam_intrinsics = i) \ for i in range(Ncameras) ] return \ optimization_inputs_baseline, \ models_true, models_baseline, \ indices_frame_camintrinsics_camextrinsics, \ lensmodel, Nintrinsics, imagersizes, \ intrinsics_true, extrinsics_true_mounted, frames_true, \ observations_true, \ Nframes
J_R_ref = grad(r_from_R, Rt0_ref[:3, :]) confirm_equal(rt, rt0_ref, msg='rt_from_Rt result') confirm_equal(J_R, J_R_ref, msg='rt_from_Rt grad result') Rt = mrcal.Rt_from_rt(rt0_ref, out=out43) confirm_equal(Rt, Rt0_ref, msg='Rt_from_rt result') Rt, J_r = mrcal.Rt_from_rt(rt0_ref, get_gradients=True, out=(out43, out333)) J_r_ref = grad(R_from_r, rt0_ref[:3]) confirm_equal(Rt, Rt0_ref, msg='Rt_from_rt result') confirm_equal(J_r, J_r_ref, msg='Rt_from_rt grad result') Rt = mrcal.invert_Rt(Rt0_ref, out=out43) confirm_equal(Rt, invert_Rt(Rt0_ref), msg='invert_Rt result') rt = mrcal.invert_rt(rt0_ref, out=out6) confirm_equal(rt, invert_rt(rt0_ref), msg='invert_rt result') rt, drt_drt = mrcal.invert_rt(rt0_ref, get_gradients=True, out=(out6, out66)) drt_drt_ref = grad(invert_rt, rt0_ref) confirm_equal(rt, invert_rt(rt0_ref), msg='invert_rt with grad result') confirm_equal(drt_drt, drt_drt_ref, msg='invert_rt drt/drt result') Rt2 = mrcal.compose_Rt(Rt0_ref, Rt1_ref, out=out43) confirm_equal(Rt2, compose_Rt(Rt0_ref, Rt1_ref), msg='compose_Rt result') rt2 = mrcal.compose_rt(rt0_ref, rt1_ref, out=out6) confirm_equal(rt2, compose_rt(rt0_ref, rt1_ref), msg='compose_rt result') # _compose_rt() is not excercised by the python library, so I explicitly test it # here
def _triangulate(# shape (Ncameras, Nintrinsics) intrinsics_data, # shape (Ncameras, 6) rt_cam_ref, # shape (Nframes,6), rt_ref_frame, rt_ref_frame_true, # shape (..., Ncameras, 2) q, lensmodel, stabilize_coords, get_gradients): if not ( intrinsics_data.ndim == 2 and intrinsics_data.shape[0] == 2 and \ rt_cam_ref.shape == (2,6) and \ rt_ref_frame.ndim == 2 and rt_ref_frame.shape[-1] == 6 and \ q.shape[-2:] == (2,2 ) ): raise Exception("Arguments must have a consistent Ncameras == 2") # I now compute the same triangulation, but just at the un-perturbed baseline, # and keeping track of all the gradients rt0r = rt_cam_ref[0] rt1r = rt_cam_ref[1] if not get_gradients: rtr1 = mrcal.invert_rt(rt1r) rt01_baseline = mrcal.compose_rt(rt0r, rtr1) # all the v have shape (...,3) vlocal0 = \ mrcal.unproject(q[...,0,:], lensmodel, intrinsics_data[0]) vlocal1 = \ mrcal.unproject(q[...,1,:], lensmodel, intrinsics_data[1]) v0 = vlocal0 v1 = \ mrcal.rotate_point_r(rt01_baseline[:3], vlocal1) # p_triangulated has shape (..., 3) p_triangulated = \ mrcal.triangulate_leecivera_mid2(v0, v1, rt01_baseline[3:]) if stabilize_coords: # shape (..., Nframes, 3) p_frames_new = \ mrcal.transform_point_rt(mrcal.invert_rt(rt_ref_frame), nps.dummy(p_triangulated,-2)) # shape (..., Nframes, 3) p_refs = mrcal.transform_point_rt(rt_ref_frame_true, p_frames_new) # shape (..., 3) p_triangulated = np.mean(p_refs, axis=-2) return p_triangulated else: rtr1,drtr1_drt1r = mrcal.invert_rt(rt1r, get_gradients=True) rt01_baseline,drt01_drt0r, drt01_drtr1 = mrcal.compose_rt(rt0r, rtr1, get_gradients=True) # all the v have shape (...,3) vlocal0, dvlocal0_dq0, dvlocal0_dintrinsics0 = \ mrcal.unproject(q[...,0,:], lensmodel, intrinsics_data[0], get_gradients = True) vlocal1, dvlocal1_dq1, dvlocal1_dintrinsics1 = \ mrcal.unproject(q[...,1,:], lensmodel, intrinsics_data[1], get_gradients = True) v0 = vlocal0 v1, dv1_dr01, dv1_dvlocal1 = \ mrcal.rotate_point_r(rt01_baseline[:3], vlocal1, get_gradients=True) # p_triangulated has shape (..., 3) p_triangulated, dp_triangulated_dv0, dp_triangulated_dv1, dp_triangulated_dt01 = \ mrcal.triangulate_leecivera_mid2(v0, v1, rt01_baseline[3:], get_gradients = True) shape_leading = dp_triangulated_dv0.shape[:-2] dp_triangulated_dq = np.zeros(shape_leading + (3,) + q.shape[-2:], dtype=float) nps.matmult( dp_triangulated_dv0, dvlocal0_dq0, out = dp_triangulated_dq[..., 0, :]) nps.matmult( dp_triangulated_dv1, dv1_dvlocal1, dvlocal1_dq1, out = dp_triangulated_dq[..., 1, :]) Nframes = len(rt_ref_frame) if stabilize_coords: # shape (Nframes,6) rt_frame_ref, drtfr_drtrf = \ mrcal.invert_rt(rt_ref_frame, get_gradients=True) # shape (Nframes,6) rt_true_shifted, _, drt_drtfr = \ mrcal.compose_rt(rt_ref_frame_true, rt_frame_ref, get_gradients=True) # shape (..., Nframes, 3) p_refs,dprefs_drt,dprefs_dptriangulated = \ mrcal.transform_point_rt(rt_true_shifted, nps.dummy(p_triangulated,-2), get_gradients = True) # shape (..., 3) p_triangulated = np.mean(p_refs, axis=-2) # I have dpold/dx. dpnew/dx = dpnew/dpold dpold/dx # shape (...,3,3) dpnew_dpold = np.mean(dprefs_dptriangulated, axis=-3) dp_triangulated_dv0 = nps.matmult(dpnew_dpold, dp_triangulated_dv0) dp_triangulated_dv1 = nps.matmult(dpnew_dpold, dp_triangulated_dv1) dp_triangulated_dt01 = nps.matmult(dpnew_dpold, dp_triangulated_dt01) dp_triangulated_dq = nps.xchg(nps.matmult( dpnew_dpold, nps.xchg(dp_triangulated_dq, -2,-3)), -2,-3) # shape (..., Nframes,3,6) dp_triangulated_drtrf = \ nps.matmult(dprefs_drt, drt_drtfr, drtfr_drtrf) / Nframes else: dp_triangulated_drtrf = np.zeros(shape_leading + (Nframes,3,6), dtype=float) return \ p_triangulated, \ drtr1_drt1r, \ drt01_drt0r, drt01_drtr1, \ dvlocal0_dintrinsics0, dvlocal1_dintrinsics1, \ dv1_dr01, dv1_dvlocal1, \ dp_triangulated_dv0, dp_triangulated_dv1, dp_triangulated_dt01, \ dp_triangulated_drtrf, \ dp_triangulated_dq