Beispiel #1
0
    def build(self, mode, config):
        """Build Mask R-CNN architecture.
            input_shape: The shape of the input image.
            mode: Either "training" or "inference". The inputs and
                outputs of the model differ accordingly.
        """
        assert mode in ['training', 'inference']

        # Image size must be dividable by 2 multiple times
        h, w = config.IMAGE_SHAPE[:2]
        if h / 2**6 != int(h / 2**6) or w / 2**6 != int(w / 2**6):
            raise Exception("Image size must be dividable by 2 at least 6 times "
                            "to avoid fractions when downscaling and upscaling."
                            "For example, use 256, 320, 384, 448, 512, ... etc. ")

        # Inputs
        input_image = KL.Input(
            shape=config.IMAGE_SHAPE.tolist(), name="input_image")
        # CHANGE: add target input
        if not config.NUM_TARGETS:
            config.NUM_TARGETS = 1
        input_target = KL.Input(
            shape=[config.NUM_TARGETS] + config.TARGET_SHAPE.tolist(), name="input_target")
        input_image_meta = KL.Input(shape=[config.IMAGE_META_SIZE],
                                    name="input_image_meta")
        if mode == "training":
            # RPN GT
            input_rpn_match = KL.Input(
                shape=[None, 1], name="input_rpn_match", dtype=tf.int32)
            input_rpn_bbox = KL.Input(
                shape=[None, 4], name="input_rpn_bbox", dtype=tf.float32)

            # Detection GT (class IDs, bounding boxes, and masks)
            # 1. GT Class IDs (zero padded)
            input_gt_class_ids = KL.Input(
                shape=[None], name="input_gt_class_ids", dtype=tf.int32)
            # 2. GT Boxes in pixels (zero padded)
            # [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)] in image coordinates
            input_gt_boxes = KL.Input(
                shape=[None, 4], name="input_gt_boxes", dtype=tf.float32)
            # Normalize coordinates
            gt_boxes = KL.Lambda(lambda x: modellib.norm_boxes_graph(
                x, K.shape(input_image)[1:3]))(input_gt_boxes)
            # 3. GT Masks (zero padded)
            # [batch, height, width, MAX_GT_INSTANCES]
            if config.USE_MINI_MASK:
                input_gt_masks = KL.Input(
                    shape=[config.MINI_MASK_SHAPE[0],
                           config.MINI_MASK_SHAPE[1], None],
                    name="input_gt_masks", dtype=bool)
            else:
                input_gt_masks = KL.Input(
                    shape=[config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1], None],
                    name="input_gt_masks", dtype=bool)
        elif mode == "inference":
            # Anchors in normalized coordinates
            input_anchors = KL.Input(shape=[None, 4], name="input_anchors")

        # Build the shared convolutional layers.
        # CHANGE: Use weightshared FPN model for image and target
        # Create FPN Model
        resnet = build_resnet_model(self.config)
        fpn = build_fpn_model(feature_maps=self.config.FPN_FEATUREMAPS)
        # Create Image FP
        _, IC2, IC3, IC4, IC5 = resnet(input_image)
        IP2, IP3, IP4, IP5, IP6 = fpn([IC2, IC3, IC4, IC5])
        # Create Target FR
        input_targets = [KL.Lambda(lambda x: x[:,idx,...])(input_target) for idx in range(input_target.shape[1])]
        for k, one_target in enumerate(input_targets):
            _, TC2, TC3, TC4, TC5 = resnet(one_target)
            out = fpn([TC2, TC3, TC4, TC5])
            if k == 0:
                target_pyramid = out
            else:
                target_pyramid = [KL.Add(name="target_adding_{}_{}".format(k, i))(
                    [target_pyramid[i], out[i]]) for i in range(len(out))]
                
        TP2, TP3, TP4, TP5, TP6 = [KL.Lambda(lambda x: x / config.NUM_TARGETS)(
            target_pyramid[i]) for i in range(len(target_pyramid))]
#        one_target = KL.Lambda(lambda x: x[:,0,...])(input_target)
#        one_target = input_target[:,0,...]
#         _, TC2, TC3, TC4, TC5 = resnet(one_target)
#         TP2, TP3, TP4, TP5, TP6 = fpn([TC2, TC3, TC4, TC5])
    
        
        # CHANGE: add siamese distance copmputation
        # Combine FPs using L1 distance
        P2 = l1_distance_graph(IP2, TP2, feature_maps = 3*self.config.FPN_FEATUREMAPS//2, name='P2')
        P3 = l1_distance_graph(IP3, TP3, feature_maps = 3*self.config.FPN_FEATUREMAPS//2, name='P3')
        P4 = l1_distance_graph(IP4, TP4, feature_maps = 3*self.config.FPN_FEATUREMAPS//2, name='P4')
        P5 = l1_distance_graph(IP5, TP5, feature_maps = 3*self.config.FPN_FEATUREMAPS//2, name='P5')
        P6 = l1_distance_graph(IP6, TP6, feature_maps = 3*self.config.FPN_FEATUREMAPS//2, name='P6')
        

        # Note that P6 is used in RPN, but not in the classifier heads.
        rpn_feature_maps = [P2, P3, P4, P5, P6]
        mrcnn_feature_maps = [P2, P3, P4, P5]

        # Anchors
        if mode == "training":
            anchors = self.get_anchors(config.IMAGE_SHAPE)
            # Duplicate across the batch dimension because Keras requires it
            # TODO: can this be optimized to avoid duplicating the anchors?
            anchors = np.broadcast_to(anchors, (config.BATCH_SIZE,) + anchors.shape)
            # A hack to get around Keras's bad support for constants
            anchors = KL.Lambda(lambda x: tf.Variable(anchors), name="anchors")(input_image)
        else:
            anchors = input_anchors

        # RPN Model
        # CHANGE: Set number of filters to [3*self.config.FPN_FEATUREMAPS//2]
        rpn = modellib.build_rpn_model(config.RPN_ANCHOR_STRIDE,
                              len(config.RPN_ANCHOR_RATIOS), 3*self.config.FPN_FEATUREMAPS//2)
        # Loop through pyramid layers
        layer_outputs = []  # list of lists
        for p in rpn_feature_maps:
            layer_outputs.append(rpn([p]))
        # Concatenate layer outputs
        # Convert from list of lists of level outputs to list of lists
        # of outputs across levels.
        # e.g. [[a1, b1, c1], [a2, b2, c2]] => [[a1, a2], [b1, b2], [c1, c2]]
        output_names = ["rpn_class_logits", "rpn_class", "rpn_bbox"]
        outputs = list(zip(*layer_outputs))
        outputs = [KL.Concatenate(axis=1, name=n)(list(o))
                   for o, n in zip(outputs, output_names)]

        rpn_class_logits, rpn_class, rpn_bbox = outputs

        # Generate proposals
        # Proposals are [batch, N, (y1, x1, y2, x2)] in normalized coordinates
        # and zero padded.
        proposal_count = config.POST_NMS_ROIS_TRAINING if mode == "training"\
            else config.POST_NMS_ROIS_INFERENCE
        rpn_rois = modellib.ProposalLayer(
            proposal_count=proposal_count,
            nms_threshold=config.RPN_NMS_THRESHOLD,
            name="ROI",
            config=config)([rpn_class, rpn_bbox, anchors])

        if mode == "training":
            # Class ID mask to mark class IDs supported by the dataset the image
            # came from.
            active_class_ids = KL.Lambda(
                lambda x: modellib.parse_image_meta_graph(x)["active_class_ids"]
                )(input_image_meta)

            if not config.USE_RPN_ROIS:
                # Ignore predicted ROIs and use ROIs provided as an input.
                input_rois = KL.Input(shape=[config.POST_NMS_ROIS_TRAINING, 4],
                                      name="input_roi", dtype=np.int32)
                # Normalize coordinates
                target_rois = KL.Lambda(lambda x: modellig.norm_boxes_graph(
                    x, K.shape(input_image)[1:3]))(input_rois)
            else:
                target_rois = rpn_rois

            # Generate detection targets
            # Subsamples proposals and generates target outputs for training
            # Note that proposal class IDs, gt_boxes, and gt_masks are zero
            # padded. Equally, returned rois and targets are zero padded.
            rois, target_class_ids, target_bbox, target_mask =\
                modellib.DetectionTargetLayer(config, name="proposal_targets")([
                    target_rois, input_gt_class_ids, gt_boxes, input_gt_masks])

            # Network Heads
            # TODO: verify that this handles zero padded ROIs
            # CHANGE: reduce number of classes to 2
            # CHANGE: replaced with custom 2 class function
            mrcnn_class_logits, mrcnn_class, mrcnn_bbox =\
                fpn_classifier_graph(rois, mrcnn_feature_maps, input_image_meta,
                                     config.POOL_SIZE, num_classes=2,
                                     train_bn=config.TRAIN_BN,
                                     fc_layers_size=config.FPN_CLASSIF_FC_LAYERS_SIZE)
            # CHANGE: reduce number of classes to 2
            # CHANGE: replaced with custom 2 class function
            if config.MODEL == 'mrcnn':
                mrcnn_mask = fpn_mask_graph(rois, mrcnn_feature_maps,
                                                  input_image_meta,
                                                  config.MASK_POOL_SIZE,
                                                  num_classes=2,
                                                  train_bn=config.TRAIN_BN)

            # TODO: clean up (use tf.identify if necessary)
            output_rois = KL.Lambda(lambda x: x * 1, name="output_rois")(rois)

            # Losses
            rpn_class_loss = KL.Lambda(lambda x: modellib.rpn_class_loss_graph(*x), name="rpn_class_loss")(
                [input_rpn_match, rpn_class_logits])
            rpn_bbox_loss = KL.Lambda(lambda x: modellib.rpn_bbox_loss_graph(config, *x), name="rpn_bbox_loss")(
                [input_rpn_bbox, input_rpn_match, rpn_bbox])
            # CHANGE: use custom class loss without using active_class_ids
            class_loss = KL.Lambda(lambda x: mrcnn_class_loss_graph(*x), name="mrcnn_class_loss")(
                [target_class_ids, mrcnn_class_logits, active_class_ids])
            bbox_loss = KL.Lambda(lambda x: modellib.mrcnn_bbox_loss_graph(*x), name="mrcnn_bbox_loss")(
                [target_bbox, target_class_ids, mrcnn_bbox])
            if config.MODEL == 'mrcnn':
                mask_loss = KL.Lambda(lambda x: modellib.mrcnn_mask_loss_graph(*x), name="mrcnn_mask_loss")(
                    [target_mask, target_class_ids, mrcnn_mask])

            # Model
            # CHANGE: Added target to inputs
            inputs = [input_image, input_image_meta, input_target,
                      input_rpn_match, input_rpn_bbox, input_gt_class_ids, input_gt_boxes, input_gt_masks]
            if not config.USE_RPN_ROIS:
                inputs.append(input_rois)
            if config.MODEL == 'mrcnn':
                outputs = [rpn_class_logits, rpn_class, rpn_bbox,
                           mrcnn_class_logits, mrcnn_class, mrcnn_bbox, mrcnn_mask,
                           rpn_rois, output_rois,
                           rpn_class_loss, rpn_bbox_loss, class_loss, bbox_loss, mask_loss]
            elif config.MODEL =='frcnn':
                outputs = [rpn_class_logits, rpn_class, rpn_bbox,
                           mrcnn_class_logits, mrcnn_class, mrcnn_bbox,
                           rpn_rois, output_rois,
                           rpn_class_loss, rpn_bbox_loss, class_loss, bbox_loss]
            model = KM.Model(inputs, outputs, name='mask_rcnn')
        else:
            # Network Heads
            # Proposal classifier and BBox regressor heads
            # CHANGE: reduce number of classes to 2
            # CHANGE: replaced with custom 2 class function
            mrcnn_class_logits, mrcnn_class, mrcnn_bbox =\
                fpn_classifier_graph(rpn_rois, mrcnn_feature_maps, input_image_meta,
                                     config.POOL_SIZE, num_classes=2,
                                     train_bn=config.TRAIN_BN, 
                                     fc_layers_size=config.FPN_CLASSIF_FC_LAYERS_SIZE)

            # Detections
            # output is [batch, num_detections, (y1, x1, y2, x2, class_id, score)] in 
            # normalized coordinates
            detections = modellib.DetectionLayer(config, name="mrcnn_detection")(
                [rpn_rois, mrcnn_class, mrcnn_bbox, input_image_meta])

            # Create masks for detections
            detection_boxes = KL.Lambda(lambda x: x[..., :4])(detections)
            # CHANGE: reduce number of classes to 2
            # CHANGE: replaced with custom 2 class function
            if config.MODEL == 'mrcnn':
                mrcnn_mask = fpn_mask_graph(detection_boxes, mrcnn_feature_maps,
                                                  input_image_meta,
                                                  config.MASK_POOL_SIZE,
                                                  num_classes=2,
                                                  train_bn=config.TRAIN_BN)
            
            # CHANGE: Added target to the input
            inputs = [input_image, input_image_meta, input_target, input_anchors]
            if config.MODEL == 'mrcnn':
                outputs = [detections, mrcnn_class, mrcnn_bbox,
                           mrcnn_mask, rpn_rois, rpn_class, rpn_bbox]
            elif config.MODEL =='frcnn':
                outputs = [detections, mrcnn_class, mrcnn_bbox,
                           rpn_rois, rpn_class, rpn_bbox]
            model = KM.Model(inputs, outputs, name='mask_rcnn')
            

        # Add multi-GPU support.
        if config.GPU_COUNT > 1:
            from mrcnn.parallel_model import ParallelModel
            model = ParallelModel(model, config.GPU_COUNT)

        return model
Beispiel #2
0
    def build(self, mode, config):
        """Build the Mask R-CNN teacher-student architecture for mimic training.
        """
        assert mode in ['training', 'inference']

        # Image size must be dividable by 2 multiple times
        h, w = config.IMAGE_SHAPE[:2]
        if h / 2 ** 6 != int(h / 2 ** 6) or w / 2 ** 6 != int(w / 2 ** 6):
            raise Exception("Image size must be dividable by 2 at least 6 times "
                            "to avoid fractions when downscaling and upscaling."
                            "For example, use 256, 320, 384, 448, 512, ... etc. ")

        # Input
        input_image = KL.Input(shape=[None, None, config.IMAGE_SHAPE[2]], name="input_image")
        input_image_meta = KL.Input(shape=[config.IMAGE_META_SIZE], name="input_image_meta")

        if mode == "training":
            # RPN GT
            input_rpn_match = KL.Input(shape=[None, 1], name="input_rpn_match", dtype=tf.int32)
            input_rpn_bbox = KL.Input(shape=[None, 4], name="input_rpn_bbox", dtype=tf.float32)

            # Detection GT (class IDs, bounding boxes, and masks)
            # 1. GT Class IDs (zero padded)
            input_gt_class_ids = KL.Input(shape=[None], name="input_gt_class_ids", dtype=tf.int32)

            # 2. GT Boxes in pixels (zero padded)
            # [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)] in image coordinates
            input_gt_boxes = KL.Input(shape=[None, 4], name="input_gt_boxes", dtype=tf.float32)
            # Normalize coordinates
            gt_boxes = KL.Lambda(lambda x: modellib.norm_boxes_graph(x, K.shape(input_image)[1:3]))(input_gt_boxes)

            # 3. GT Masks (zero padded)
            # [batch, height, width, MAX_GT_INSTANCES]
            if config.USE_MINI_MASK:
                input_gt_masks = KL.Input(
                    shape=[config.MINI_MASK_SHAPE[0],
                           config.MINI_MASK_SHAPE[1], None],
                    name="input_gt_masks", dtype=bool)
            else:
                input_gt_masks = KL.Input(
                    shape=[config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1], None],
                    name="input_gt_masks", dtype=bool)

            # Class ID mask to mark class IDs supported by the dataset the image came from.
            active_class_ids = KL.Lambda(
                lambda x: modellib.parse_image_meta_graph(x)["active_class_ids"]
            )(input_image_meta)

        elif mode == "inference":
            pass

        # Build the architecture of the teacher model
        # Backbone
        _, C2, C3, C4, C5 = modellib.resnet_graph(input_image, config.TEACHER_BACKBONE, stage5=True, train_bn=False)
        # Top-down Layers
        P5 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c5p5')(C5)
        P4 = KL.Add(name="fpn_p4add")([
            KL.UpSampling2D(size=(2, 2), name="fpn_p5upsampled")(P5),
            KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c4p4')(C4)])
        P3 = KL.Add(name="fpn_p3add")([
            KL.UpSampling2D(size=(2, 2), name="fpn_p4upsampled")(P4),
            KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c3p3')(C3)])
        P2 = KL.Add(name="fpn_p2add")([
            KL.UpSampling2D(size=(2, 2), name="fpn_p3upsampled")(P3),
            KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c2p2')(C2)])
        # Attach 3x3 conv to all P layers to get the final feature maps.
        P2 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p2")(P2)  # N x 256 x 256 x 256
        P3 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p3")(P3)  # N x 128 x 128 x 256
        P4 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p4")(P4)  # N x 64 x 64 x 256
        P5 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p5")(P5)  # N x 32 x 32 x 256

        # Note that P6 is used in RPN, but not in the classifier heads.
        t_mrcnn_feature_maps = [P2, P3, P4, P5]

        # Build the architecture of the student model
        s_prefix = 's_'
        # Backbone
        _, S2, S3, S4, S5 = s_resnet_graph(input_image, config.STUDENT_BACKBONE, prefix=s_prefix, train_bn=None)
        # Top-down Layers
        Q5 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name=s_prefix + 'fpn_s5q5')(S5)
        Q4 = KL.Add(name=s_prefix + "fpn_q4add")([
            KL.UpSampling2D(size=(2, 2), name=s_prefix + "fpn_q5upsampled")(Q5),
            KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name=s_prefix + 'fpn_s4q4')(S4)])
        Q3 = KL.Add(name=s_prefix + "fpn_q3add")([
            KL.UpSampling2D(size=(2, 2), name=s_prefix + "fpn_q4upsampled")(Q4),
            KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name=s_prefix + 'fpn_s3q3')(S3)])
        Q2 = KL.Add(name=s_prefix + "fpn_q2add")([
            KL.UpSampling2D(size=(2, 2), name=s_prefix + "fpn_q3upsampled")(Q3),
            KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name=s_prefix + 'fpn_s2q2')(S2)])
        # Attach 3x3 conv to all Q layers to get the final feature maps.
        Q2 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name=s_prefix + "fpn_q2")(
            Q2)  # N x 256 x 256 x 256
        Q3 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name=s_prefix + "fpn_q3")(
            Q3)  # N x 128 x 128 x 256
        Q4 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name=s_prefix + "fpn_q4")(
            Q4)  # N x 64 x 64 x 256
        Q5 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name=s_prefix + "fpn_q5")(
            Q5)  # N x 32 x 32 x 256
        # Q6 is used for the 5th anchor scale in RPN. Generated by
        # subsampling from P5 with stride of 2.
        Q6 = KL.MaxPooling2D(pool_size=(1, 1), strides=2, name=s_prefix + "fpn_q6")(Q5)

        # Note that P6 is used in RPN, but not in the classifier heads.
        s_rpn_feature_maps = [Q2, Q3, Q4, Q5, Q6]
        s_mrcnn_feature_maps = [Q2, Q3, Q4, Q5]

        # RPN Model
        s_rpn = s_build_rpn_model(config.RPN_ANCHOR_STRIDE,
                                  len(config.RPN_ANCHOR_RATIOS), config.TOP_DOWN_PYRAMID_SIZE, prefix=s_prefix)
        # Loop through pyramid layers
        s_layer_outputs = []  # list of lists
        for p in s_rpn_feature_maps:
            s_layer_outputs.append(s_rpn([p]))
        # Concatenate layer outputs
        # Convert from list of lists of level outputs to list of lists of outputs across levels.
        # e.g. [[a1, b1, c1], [a2, b2, c2]] => [[a1, a2], [b1, b2], [c1, c2]]
        s_output_names = ["s_rpn_class_logits", "s_rpn_class", "s_rpn_bbox"]
        s_outputs = list(zip(*s_layer_outputs))
        s_outputs = [KL.Concatenate(axis=1, name=n)(list(o))
                     for o, n in zip(s_outputs, s_output_names)]

        s_rpn_class_logits, s_rpn_class, s_rpn_bbox = s_outputs

        # Proposals
        anchors = self.get_anchors(config.IMAGE_SHAPE)
        # Duplicate across the batch dimension because Keras requires it
        # TODO: can this be optimized to avoid duplicating the anchors?
        anchors = np.broadcast_to(anchors, (config.BATCH_SIZE,) + anchors.shape)
        # A hack to get around Keras's bad support for constants
        anchors = KL.Lambda(lambda x: tf.Variable(anchors), name="anchors")(input_image)

        # Generate proposals
        # Proposals are [batch, N, (y1, x1, y2, x2)] in normalized coordinates
        # and zero padded.
        proposal_count = config.POST_NMS_ROIS_TRAINING if mode == "training" \
            else config.POST_NMS_ROIS_INFERENCE
        s_rpn_rois = s_ProposalLayer(
            proposal_count=proposal_count,
            nms_threshold=config.RPN_NMS_THRESHOLD,
            name="s_ROI",
            config=config)([s_rpn_class, s_rpn_bbox, anchors])

        # Generate detection targets
        # Subsamples proposals and generates target outputs for training
        # Note that proposal class IDs, gt_boxes, and gt_masks are zero
        # padded. Equally, returned rois and targets are zero padded.
        s_rois, target_class_ids, target_bbox, target_mask = \
            modellib.DetectionTargetLayer(config, name="proposal_targets")([
                s_rpn_rois, input_gt_class_ids, gt_boxes, input_gt_masks])
        # s_rois: [batch, TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)] in normalized coordinates

        # Add a transformer layer to the feature maps from the student model before comparison with the teacher model
        transformer = build_transformer_layer(config.TOP_DOWN_PYRAMID_SIZE)
        s_transformed_feature_maps = [transformer([p]) for p in s_mrcnn_feature_maps]

        # Losses
        rpn_class_loss = KL.Lambda(lambda x: modellib.rpn_class_loss_graph(*x), name="rpn_class_loss")(
            [input_rpn_match, s_rpn_class_logits])
        rpn_bbox_loss = KL.Lambda(lambda x: modellib.rpn_bbox_loss_graph(config, *x), name="rpn_bbox_loss")(
            [input_rpn_bbox, input_rpn_match, s_rpn_bbox])
        rpn_mimic_loss = KL.Lambda(lambda x: rpn_mimic_loss_graph(config, *x), name="rpn_mimic_loss")(
            [s_transformed_feature_maps[0], s_transformed_feature_maps[1],
             s_transformed_feature_maps[2], s_transformed_feature_maps[3],
             t_mrcnn_feature_maps[0], t_mrcnn_feature_maps[1],
             t_mrcnn_feature_maps[2], t_mrcnn_feature_maps[3],
             s_rois, input_image_meta])

        # Model
        inputs = [input_image, input_image_meta, input_rpn_match, input_rpn_bbox,
                  input_gt_class_ids, input_gt_boxes, input_gt_masks]
        outputs = [s_rpn_class_logits, s_rpn_class, s_rpn_bbox,
                   s_rpn_rois, rpn_class_loss, rpn_bbox_loss, rpn_mimic_loss]
        model = KM.Model(inputs, outputs, name='mimic_mask_rcnn')

        # Add multi-GPU support.
        if config.GPU_COUNT > 1:
            from mrcnn.parallel_model import ParallelModel
            model = ParallelModel(model, config.GPU_COUNT)

        return model