def compute_batch_ap(dataset, image_ids, verbose=1):
    APs = []
    for image_id in image_ids:
        # Load image
        image, image_meta, gt_class_id, gt_bbox, gt_mask =\
            modellib.load_image_gt(dataset, config,
                                   image_id, use_mini_mask=False)
        # Run object detection
        results = model.detect_molded(image[np.newaxis],
                                      image_meta[np.newaxis],
                                      verbose=0)
        # Compute AP over range 0.5 to 0.95
        r = results[0]
        ap = utils.compute_ap_range(gt_bbox,
                                    gt_class_id,
                                    gt_mask,
                                    r['rois'],
                                    r['class_ids'],
                                    r['scores'],
                                    r['masks'],
                                    verbose=0)
        APs.append(ap)
        if verbose:
            info = dataset.image_info[image_id]
            meta = modellib.parse_image_meta(image_meta[np.newaxis, ...])
            print("{:3} {}   AP: {:.2f}".format(
                meta["image_id"][0], meta["original_image_shape"][0], ap))
    return APs
Beispiel #2
0
def perform_eval(model, dataset):
    APs = []
    for image_id in dataset.image_ids:
        # Load image
        image, image_meta, gt_class_id, gt_bbox, gt_mask =\
            modellib.load_image_gt(dataset, config,
                                   image_id, use_mini_mask=False)
        # Run object detection
        results = model.detect_molded(image[np.newaxis],
                                      image_meta[np.newaxis],
                                      verbose=0)
        # Compute AP over range 0.5 to 0.95
        r = results[0]
        if r['masks'].shape[-1] > 0:
            ap = utils.compute_ap_range(gt_bbox,
                                        gt_class_id,
                                        gt_mask,
                                        r['rois'],
                                        r['class_ids'],
                                        r['scores'],
                                        r['masks'],
                                        verbose=0)
            APs.append(ap)
            info = dataset.image_info[image_id]
            meta = modellib.parse_image_meta(image_meta[np.newaxis, ...])
            print("{:3} {}   AP: {:.2f}".format(
                meta["image_id"][0], meta["original_image_shape"][0], ap))
    print("Mean AP overa {} images: {:.4f}".format(len(APs), np.mean(APs)))
Beispiel #3
0
def compute_batch_ap(model, dataset, image_ids, config, verbose=1):
    assert isinstance(model, model_lib.MaskRCNN)
    APs = []
    buckets = [image_ids[i:i + config.BATCH_SIZE] for i in range(0, len(image_ids), config.BATCH_SIZE)]
    for images_id in buckets:
        if len(images_id) != config.BATCH_SIZE:
            continue
        images = []
        images_meta = []
        for image_id in images_id:
            # Load image
            log.debug('loading image %s' % image_id)
            image, image_meta, gt_class_id, gt_bbox, gt_mask = model_lib.load_image_gt(dataset, config, image_id, use_mini_mask=False)
            images.append(image)
            images_meta.append(image_meta)

        # Run object detection
        results = model.detect_molded(np.stack(images, axis=0), np.stack(images_meta, axis=0), verbose=0)
        assert config.BATCH_SIZE == len(results)

        # Compute AP over range 0.5 to 0.95
        for r, image_id, image_meta in zip(results, images_id, images_meta):
            ap = utils.compute_ap_range(gt_bbox, gt_class_id, gt_mask, r['rois'], r['class_ids'], r['scores'], r['masks'], verbose=0)
            APs.append(ap)
            if verbose:
                info = dataset.image_info[image_id]
                meta = model_lib.parse_image_meta(image_meta[np.newaxis, ...])
                log.debug("{:3} {}   AP: {:.2f}".format(meta["image_id"][0], meta["original_image_shape"][0], ap))

    return APs
Beispiel #4
0
def compute_batch_ap(dataset, image_ids, verbose=1):
    APs = []
    mask_IoU = []
    for image_id in image_ids:
        # Load image

        image, image_meta, gt_class_id, gt_bbox, gt_mask =\
            modellib.load_image_gt(dataset, config, image_id, use_mini_mask=False)

        # Run object detection
        #results = model.detect_molded(image[np.newaxis], image_meta[np.newaxis], verbose=0)#gave only one mask
        results = model.detect([image], verbose=0)
        # Compute AP over range 0.5 to 0.95
        r = results[0]
        ap = utils.compute_ap_range(gt_bbox,
                                    gt_class_id,
                                    gt_mask,
                                    r['rois'],
                                    r['class_ids'],
                                    r['scores'],
                                    r['masks'],
                                    verbose=0)
        #print(r['scores'])
        #print(r['masks'].shape)
        APs.append(ap)

        if verbose:
            info = dataset.image_info[image_id]
            meta = modellib.parse_image_meta(image_meta[np.newaxis, ...])
            #print("{:3} {}   AP: {:.2f}".format(
            #meta["image_id"][0], meta["original_image_shape"][0], ap))
    return APs  #this outputs mAPs per image. May be usefull to keep it like that
def evaluate_data_generator():
    g, num_random_rois, detection_targets = create_data_generator()
    # Get Next Image
    if num_random_rois:
        if detection_targets:
            [normalized_images, image_meta, rpn_match, rpn_bbox, gt_class_ids, gt_boxes, gt_masks, rpn_rois, rois], \
            [mrcnn_class_ids, mrcnn_bbox, mrcnn_mask] = next(g)
            log("mrcnn_class_ids", mrcnn_class_ids)
            log("mrcnn_bbox", mrcnn_bbox)
            log("mrcnn_mask", mrcnn_mask)
        else:
            [normalized_images, image_meta, rpn_match, rpn_bbox, gt_class_ids, gt_boxes, gt_masks, rpn_rois, rois], _ \
                = next(g)
        log("rois", rois)
        log("rpn_rois", rpn_rois)
    else:
        [
            normalized_images, image_meta, rpn_match, rpn_bbox, gt_class_ids,
            gt_boxes, gt_masks
        ], _ = next(g)
    log("gt_class_ids", gt_class_ids)
    log("gt_boxes", gt_boxes)
    log("gt_masks", gt_masks)
    log(
        "rpn_match",
        rpn_match,
    )
    log("rpn_bbox", rpn_bbox)
    image_ids = modellib.parse_image_meta(image_meta)["image_id"]
    for image_id in image_ids:
        # image_reference 返回 image 的路径
        print("image_id: ", image_id, dataset.image_reference(image_id))
def compute_batch_ap(dataset, image_ids, verbose=1):
    APs = []
    mean_weight_iou = []
    for image_id in image_ids:
        try:
            # Load image
            image, image_meta, gt_class_id, gt_bbox, gt_mask =\
                modellib.load_image_gt(dataset, config,
                                       image_id, use_mini_mask=False)
            # Run object detection
            results = model.detect_molded(image[np.newaxis],
                                          image_meta[np.newaxis],
                                          verbose=0)
            # Compute AP over range 0.5 to 0.95
            r = results[0]
            ap, weightd_IoU = compute_ap_range(gt_bbox,
                                               gt_class_id,
                                               gt_mask,
                                               r['rois'],
                                               r['class_ids'],
                                               r['scores'],
                                               r['masks'],
                                               verbose=0)
            APs.append(ap)
            mean_weight_iou.append(weightd_IoU[0])
            if verbose:
                info = dataset.image_info[image_id]
                meta = modellib.parse_image_meta(image_meta[np.newaxis, ...])
                print(
                    "{:3} {}   AP: {:.2f}".format(
                        meta["image_id"][0], meta["original_image_shape"][0],
                        ap), " and mean IoU for class1 and class2 are : ",
                    weightd_IoU[0][0], weightd_IoU[0][1])
        except:
            print("image Id :", image_id)
            #print(sys.exc_info()[0])
            ap = 0
            APs.append(ap)
            if verbose:
                info = dataset.image_info[image_id]
                meta = modellib.parse_image_meta(image_meta[np.newaxis, ...])
                print("{:3} {}   AP: {:.2f}".format(
                    meta["image_id"][0], meta["original_image_shape"][0], ap))
            pass
    return APs, mean_weight_iou
def compute_batch_ap(model, model_config, dataset, limit, verbose=1):
    """
    Validates the model on the dataset in the provided directory, and 
    computes validation metric (mAP).
    """
    # Validation dataset
    dataset_val = AlliumDataset()
    dataset_val.load_allium(dataset, "val")
    dataset_val.prepare()
    if limit:
        image_ids = dataset_val.image_ids[:limit]
    else:
        image_ids = dataset_val.image_ids
    print("Images: {}\nClasses: {}".format(len(dataset_val.image_ids),
                                           dataset_val.class_names))

    # Compute mAP
    APs = []
    for image_id in image_ids:
        # Load image
        image, image_meta, gt_class_id, gt_bbox, gt_mask =\
            modellib.load_image_gt(dataset_val, config,
                                   image_id, use_mini_mask=False)
        # Run object detection
        results = model.detect_molded(image[np.newaxis],
                                      image_meta[np.newaxis],
                                      verbose=0)
        # Compute AP over range 0.5 to 0.95
        r = results[0]
        ap = utils.compute_ap_range(gt_bbox,
                                    gt_class_id,
                                    gt_mask,
                                    r['rois'],
                                    r['class_ids'],
                                    r['scores'],
                                    r['masks'],
                                    verbose=0)
        APs.append(ap)
        if verbose:
            # info = dataset.image_info[image_id]
            meta = modellib.parse_image_meta(image_meta[np.newaxis, ...])
            print("{:3} {}   AP: {:.2f}".format(
                meta["image_id"][0], meta["original_image_shape"][0], ap))

    # Print the results
    mAP = np.mean(APs)
    print("Average precisions are: {}".format(APs))
    print("Mean average precision is: {}".format(mAP))

    return mAP
Beispiel #8
0
def compute_batch_ap(dataset, image_ids, verbose=1):
    APs = []
    mean_weight_iou = []
    for image_id in image_ids:
        try:
            # Load image
            image, image_meta, gt_class_id, gt_bbox, gt_mask =\
                modellib.load_image_gt(dataset, config_2class,
                                       image_id, use_mini_mask=False)
            # Run object detection
            results = model_2class.detect_molded(image[np.newaxis], image_meta[np.newaxis], verbose=0)
            # Compute AP over range 0.5 to 0.95
            r = results[0]
            visualize.save_image(image, "test"+str(image_id), r['rois'], r['masks'],
                    r['class_ids'],r['scores'],['BG', 'Whole Corn','Bare Cob'],scores_thresh=0.8,mode=0, captions=None, show_mask=True)
            gt_r = {"class_ids": gt_class_id,
                   "rois": gt_bbox,
                    "masks": gt_mask}
            gt_corns, gt_corn_masks, gt_red_corn_masks = get_cornList(gt_r, 2, image)
               # print('gt_mask size:  ',gt_corn_masks.shape)
            pred_corns, pred_cornMasks, pred_redCornMasks = get_cornList(r, 2, image)
            #print(pred_corns)
            print(image_id, "Image" , os.path.basename(dataset_2class.source_image_link(image_id)))
            print(image_id, 'percent_eaten_gt', gt_corns[1]['percent_eaten'])
            print(image_id, 'percent_eaten_pred', pred_corns[1]['percent_eaten'])
            print(image_id, 'percent_eaten_gt', gt_corns[0]['percent_eaten'])
            print(image_id, 'percent_eaten_pred', pred_corns[0]['percent_eaten'])
            print("*****************************************************************")
            images.append(os.path.basename(dataset_2class.source_image_link(image_id)))
            gt_one.append(gt_corns[1]['percent_eaten'])
            pred_one.append(pred_corns[1]['percent_eaten'])
            gt_two.append(gt_corns[0]['percent_eaten'])
            pred_two.append(pred_corns[0]['percent_eaten'])
        except:
            print("image Id :", image_id)
            print(sys.exc_info())
            ap = 0
            APs.append(ap)
            if verbose:
                info = dataset.image_info[image_id]
                meta = modellib.parse_image_meta(image_meta[np.newaxis,...])
                print("{:3} {}   AP: {:.2f}".format(
                    meta["image_id"][0], meta["original_image_shape"][0], ap))
            pass
    return APs
    [normalized_images, image_meta, rpn_match, rpn_bbox, gt_class_ids, gt_boxes, gt_masks, rpn_rois, rois], \
    [mrcnn_class_ids, mrcnn_bbox, mrcnn_mask] = next(g)

    log("rois", rois)
    log("mrcnn_class_ids", mrcnn_class_ids)
    log("mrcnn_bbox", mrcnn_bbox)
    log("mrcnn_mask", mrcnn_mask)
else:
    [normalized_images, image_meta, rpn_match, rpn_bbox, gt_boxes, gt_masks], _ = next(g)

log("gt_class_ids", gt_class_ids)
log("gt_boxes", gt_boxes)
log("gt_masks", gt_masks)
log("rpn_match", rpn_match, )
log("rpn_bbox", rpn_bbox)
image_id = modellib.parse_image_meta(image_meta)["image_id"][0]
print("image_id: ", image_id, dataset.image_reference(image_id))

# Remove the last dim in mrcnn_class_ids. It's only added
# to satisfy Keras restriction on target shape.
mrcnn_class_ids = mrcnn_class_ids[:, :, 0]


b = 0

# Restore original image (reverse normalization)
sample_image = modellib.unmold_image(normalized_images[b], config)

# Compute anchor shifts.
indices = np.where(rpn_match[b] == 1)[0]
refined_anchors = utils.apply_box_deltas(anchors[indices], rpn_bbox[b, :len(indices)] * config.RPN_BBOX_STD_DEV)
Beispiel #10
0
    def get_labels(self, labels):

        dims = labels.shape

        unlabeled_labels = np.zeros((dims[0], dims[1], 1))
        building_labels = np.zeros((dims[0], dims[1], 1))
        fence_labels = np.zeros((dims[0], dims[1], 1))
        other_labels = np.zeros((dims[0], dims[1], 1))
        pedestrian_labels = np.zeros((dims[0], dims[1], 1))
        pole_labels = np.zeros((dims[0], dims[1], 1))
        road_line_labels = np.zeros((dims[0], dims[1], 1))
        road_labels = np.zeros((dims[0], dims[1], 1))
        sidewalk_labels = np.zeros((dims[0], dims[1], 1))
        vegetation_labels = np.zeros((dims[0], dims[1], 1))
        car_labels = np.zeros((dims[0], dims[1], 1))
        wall_labels = np.zeros((dims[0], dims[1], 1))
        traffic_sign_labels = np.zeros((dims[0], dims[1], 1))

        unlabeled_index = np.all(labels == (0, 0, 0), axis=-1)
        building_index = np.all(labels == (70, 70, 70), axis=-1)
        fence_index = np.all(labels == (190, 153, 153), axis=-1)
        other_index = np.all(labels == (250, 170, 160), axis=-1)
        pedestrian_index = np.all(labels == (220, 20, 60), axis=-1)
        pole_index = np.all(labels == (153, 153, 153), axis=-1)
        road_line_index = np.all(labels == (157, 234, 50), axis=-1)
        road_index = np.all(labels == (128, 64, 128), axis=-1)
        sidewalk_index = np.all(labels == (244, 35, 232), axis=-1)
        vegetation_index = np.all(labels == (107, 142, 35), axis=-1)
        car_index = np.all(labels == (0, 0, 142), axis=-1)
        wall_index = np.all(labels == (102, 102, 156), axis=-1)
        traffic_sign_index = np.all(labels == (220, 220, 70), axis=-1)

        unlabeled_labels[unlabeled_index] = 1
        building_labels[building_index] = 10
        fence_labels[fence_index] = 10
        other_labels[other_index] = 10
        pedestrian_labels[pedestrian_index] = 10
        pole_labels[pole_index] = 10
        road_line_labels[road_line_index] = 10
        road_labels[road_index] = 10
        sidewalk_labels[sidewalk_index] = 10
        vegetation_labels[vegetation_index] = 1
        car_labels[car_index] = 10
        wall_labels[wall_index] = 10
        traffic_sign_labels[traffic_sign_index] = 10

        return np.dstack([unlabeled_labels, building_labels, fence_labels,
        return np.dstack([unlabeled_labels, building_labels, fence_labels,
                          other_labels, pedestrian_labels, pole_labels,
                          road_line_labels, road_labels, sidewalk_labels, vegetation_labels,
                          car_labels, wall_labels, traffic_sign_labels])

    def image_reference(self, image_id):
        """Return the carla data of the image."""
        info = self.image_info[image_id]
        if info["source"] == "carla":
            return info["id"]
        else:
            super(self.__class__).image_reference(self, image_id)

config = CarlaConfig()
config.STEPS_PER_EPOCH = NUMBER_OF_TRAIN_DATA//config.BATCH_SIZE
config.VALIDATION_STEPS = NUMBER_OF_VAL_DATA//config.BATCH_SIZE
config.display()


dataset = carlaDataset()
dataset.load_images(dir=RGB_TRAIN_DIR, type='train')


# mask, a = train.load_mask(50)
# print(a)
dataset.prepare()
print("Image Count: {}".format(len(dataset.image_ids)))
print("Class Count: {}".format(dataset.num_classes))
for i, info in enumerate(dataset.class_info):
    print("{:3}. {:50}".format(i, info['name']))

image_ids = np.random.choice(dataset.image_ids, 4)
for image_id in image_ids:
    image = dataset.load_image(image_id)
    mask, class_ids = dataset.load_mask(image_id)
    visualize.display_top_masks(image, mask, class_ids, dataset.class_names)




# Load random image and mask.
image_id = random.choice(dataset.image_ids)
image = dataset.load_image(image_id)
mask, class_ids = dataset.load_mask(image_id)
# Compute Bounding box
bbox = utils.extract_bboxes(mask)

# Display image and additional stats
print("image_id ", image_id)
log("image", image)
log("mask", mask)
log("class_ids", class_ids)
log("bbox", bbox)
# Display image and instances
visualize.display_instances(image, bbox, mask, class_ids, dataset.class_names)


# Load random image and mask.
image_id = np.random.choice(dataset.image_ids, 1)[0]
image = dataset.load_image(image_id)
mask, class_ids = dataset.load_mask(image_id)
original_shape = image.shape
# Resize
image, window, scale, padding, _ = utils.resize_image(
    image,
    min_dim=config.IMAGE_MIN_DIM,
    max_dim=config.IMAGE_MAX_DIM,
    mode=config.IMAGE_RESIZE_MODE)
mask = utils.resize_mask(mask, scale, padding)
# Compute Bounding box
bbox = utils.extract_bboxes(mask)

# Display image and additional stats
print("image_id: ", image_id)
print("Original shape: ", original_shape)
log("image", image)
log("mask", mask)
log("class_ids", class_ids)
log("bbox", bbox)
# Display image and instances
visualize.display_instances(image, bbox, mask, class_ids, dataset.class_names)



image_id = np.random.choice(dataset.image_ids, 1)[0]
image, image_meta, class_ids, bbox, mask = modellib.load_image_gt(
    dataset, config, image_id, use_mini_mask=False)

log("image", image)
log("image_meta", image_meta)
log("class_ids", class_ids)
log("bbox", bbox)
log("mask", mask)

display_images([image]+[mask[:,:,i] for i in range(min(mask.shape[-1], 7))])

visualize.display_instances(image, bbox, mask, class_ids, dataset.class_names)

# Generate Anchors
backbone_shapes = modellib.compute_backbone_shapes(config, config.IMAGE_SHAPE)
anchors = utils.generate_pyramid_anchors(config.RPN_ANCHOR_SCALES,
                                          config.RPN_ANCHOR_RATIOS,
                                          backbone_shapes,
                                          config.BACKBONE_STRIDES,
                                          config.RPN_ANCHOR_STRIDE)

# Print summary of anchors
num_levels = len(backbone_shapes)
anchors_per_cell = len(config.RPN_ANCHOR_RATIOS)
print("Count: ", anchors.shape[0])
print("Scales: ", config.RPN_ANCHOR_SCALES)
print("ratios: ", config.RPN_ANCHOR_RATIOS)
print("Anchors per Cell: ", anchors_per_cell)
print("Levels: ", num_levels)
anchors_per_level = []
for l in range(num_levels):
    num_cells = backbone_shapes[l][0] * backbone_shapes[l][1]
    anchors_per_level.append(anchors_per_cell * num_cells // config.RPN_ANCHOR_STRIDE**2)
    print("Anchors in Level {}: {}".format(l, anchors_per_level[l]))
## Visualize anchors of one cell at the center of the feature map of a specific level

# Load and draw random image
image_id = np.random.choice(dataset.image_ids, 1)[0]
image, image_meta, _, _, _ = modellib.load_image_gt(dataset, config, image_id)
fig, ax = plt.subplots(1, figsize=(10, 10))
ax.imshow(image)
levels = len(backbone_shapes)

for level in range(levels):
    colors = visualize.random_colors(levels)
    # Compute the index of the anchors at the center of the image
    level_start = sum(anchors_per_level[:level]) # sum of anchors of previous levels
    level_anchors = anchors[level_start:level_start+anchors_per_level[level]]
    print("Level {}. Anchors: {:6}  Feature map Shape: {}".format(level, level_anchors.shape[0],
                                                                  backbone_shapes[level]))
    center_cell = backbone_shapes[level] // 2
    center_cell_index = (center_cell[0] * backbone_shapes[level][1] + center_cell[1])
    level_center = center_cell_index * anchors_per_cell
    center_anchor = anchors_per_cell * (
        (center_cell[0] * backbone_shapes[level][1] / config.RPN_ANCHOR_STRIDE**2) \
        + center_cell[1] / config.RPN_ANCHOR_STRIDE)
    level_center = int(center_anchor)

    # Draw anchors. Brightness show the order in the array, dark to bright.
    for i, rect in enumerate(level_anchors[level_center:level_center+anchors_per_cell]):
        y1, x1, y2, x2 = rect
        p = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=2, facecolor='none',
                              edgecolor=(i+1)*np.array(colors[level]) / anchors_per_cell)
        ax.add_patch(p)

# Create data generator
random_rois = 4000
g = modellib.data_generator(
    dataset, config, shuffle=True, random_rois=random_rois,
    batch_size=4,
    detection_targets=True)
# Get Next Image
if random_rois:
    [normalized_images, image_meta, rpn_match, rpn_bbox, gt_class_ids, gt_boxes, gt_masks, rpn_rois, rois], \
    [mrcnn_class_ids, mrcnn_bbox, mrcnn_mask] = next(g)

    log("rois", rois)
    log("mrcnn_class_ids", mrcnn_class_ids)
    log("mrcnn_bbox", mrcnn_bbox)
    log("mrcnn_mask", mrcnn_mask)
else:
    [normalized_images, image_meta, rpn_match, rpn_bbox, gt_boxes, gt_masks], _ = next(g)

log("gt_class_ids", gt_class_ids)
log("gt_boxes", gt_boxes)
log("gt_masks", gt_masks)
log("rpn_match", rpn_match, )
log("rpn_bbox", rpn_bbox)
image_id = modellib.parse_image_meta(image_meta)["image_id"][0]
print("image_id: ", image_id, dataset.image_reference(image_id))

# Remove the last dim in mrcnn_class_ids. It's only added
# to satisfy Keras restriction on target shape.
mrcnn_class_ids = mrcnn_class_ids[:, :, 0]


b = 0

# Restore original image (reverse normalization)
sample_image = modellib.unmold_image(normalized_images[b], config)

# Compute anchor shifts.
indices = np.where(rpn_match[b] == 1)[0]
refined_anchors = utils.apply_box_deltas(anchors[indices], rpn_bbox[b, :len(indices)] * config.RPN_BBOX_STD_DEV)
log("anchors", anchors)
log("refined_anchors", refined_anchors)

# Get list of positive anchors
positive_anchor_ids = np.where(rpn_match[b] == 1)[0]
print("Positive anchors: {}".format(len(positive_anchor_ids)))
negative_anchor_ids = np.where(rpn_match[b] == -1)[0]
print("Negative anchors: {}".format(len(negative_anchor_ids)))
neutral_anchor_ids = np.where(rpn_match[b] == 0)[0]
print("Neutral anchors: {}".format(len(neutral_anchor_ids)))

# ROI breakdown by class
for c, n in zip(dataset.class_names, np.bincount(mrcnn_class_ids[b].flatten())):
    if n:
        print("{:23}: {}".format(c[:20], n))

# Show positive anchors
visualize.draw_boxes(sample_image, boxes=anchors[positive_anchor_ids],
                     refined_boxes=refined_anchors)



# Show negative anchors
visualize.draw_boxes(sample_image, boxes=anchors[negative_anchor_ids])


# Show neutral anchors. They don't contribute to training.
visualize.draw_boxes(sample_image, boxes=anchors[np.random.choice(neutral_anchor_ids, 100)])

if random_rois:
    # Class aware bboxes
    bbox_specific = mrcnn_bbox[b, np.arange(mrcnn_bbox.shape[1]), mrcnn_class_ids[b], :]

    # Refined ROIs
    refined_rois = utils.apply_box_deltas(rois[b].astype(np.float32), bbox_specific[:, :4] * config.BBOX_STD_DEV)

    # Class aware masks
    mask_specific = mrcnn_mask[b, np.arange(mrcnn_mask.shape[1]), :, :, mrcnn_class_ids[b]]

    visualize.draw_rois(sample_image, rois[b], refined_rois, mask_specific, mrcnn_class_ids[b], dataset.class_names)

    # Any repeated ROIs?
    rows = np.ascontiguousarray(rois[b]).view(np.dtype((np.void, rois.dtype.itemsize * rois.shape[-1])))
    _, idx = np.unique(rows, return_index=True)
    print("Unique ROIs: {} out of {}".format(len(idx), rois.shape[1]))
if random_rois:
    # Dispalay ROIs and corresponding masks and bounding boxes
    ids = random.sample(range(rois.shape[1]), 8)

    images = []
    titles = []
    for i in ids:
        image = visualize.draw_box(sample_image.copy(), rois[b,i,:4].astype(np.int32), [255, 0, 0])
        image = visualize.draw_box(image, refined_rois[i].astype(np.int64), [0, 255, 0])
        images.append(image)
        titles.append("ROI {}".format(i))
        images.append(mask_specific[i] * 255)
        titles.append(dataset.class_names[mrcnn_class_ids[b,i]][:20])

    display_images(images, titles, cols=4, cmap="Blues", interpolation="none")
# Check ratio of positive ROIs in a set of images.
if random_rois:
    limit = 10
    temp_g = modellib.data_generator(
        dataset, config, shuffle=True, random_rois=10000,
        batch_size=1, detection_targets=True)
    total = 0
    for i in range(limit):
        _, [ids, _, _] = next(temp_g)
        positive_rois = np.sum(ids[0] > 0)
        total += positive_rois
        print("{:5} {:5.2f}".format(positive_rois, positive_rois/ids.shape[1]))
    print("Average percent: {:.2f}".format(total/(limit*ids.shape[1])))
exit()
# Or, load the last model you trained
# weights_path = model.find_last()[1]

# Load weights
print("Loading weights ", weights_path)
model.load_weights(weights_path, by_name=True)

image_id = random.choice(dataset.image_ids)
image, image_meta, gt_class_id, gt_bbox, gt_mask =\
    modellib.load_image_gt(dataset, config, image_id, use_mini_mask=False)
info = dataset.image_info[image_id]
print("image ID: {}.{} ({}) {}".format(info["source"], info["id"], image_id,
                                       dataset.image_reference(image_id)))
print(
    "Original image shape: ",
    modellib.parse_image_meta(image_meta[np.newaxis,
                                         ...])["original_image_shape"][0])

# Run object detection
results = model.detect_molded(np.expand_dims(image, 0),
                              np.expand_dims(image_meta, 0),
                              verbose=1)

# Display results
r = results[0]
log("gt_class_id", gt_class_id)
log("gt_bbox", gt_bbox)
log("gt_mask", gt_mask)

# Compute AP over range 0.5 to 0.95 and print it
utils.compute_ap_range(gt_bbox,
                       gt_class_id,
Beispiel #12
0
def compute_batch_ap(dataset, image_ids, verbose=1):
    APs_general = []
    APs_ring = []
    APs_crack = []
    # loop throgh all val dataset
    for image_id in image_ids:
        # Load image ground truths
        image, image_meta, gt_class_id, gt_bbox, gt_mask =\
            modellib.load_image_gt(dataset, config, image_id, use_mini_mask=False)
        print(image_id)
        # Run object detection
        results = model.detect([image], verbose=0)
        # Compute AP over range 0.5 to 0.95
        r = results[0]
        ap = utils.compute_ap_range(gt_bbox,
                                    gt_class_id,
                                    gt_mask,
                                    r['rois'],
                                    r['class_ids'],
                                    r['scores'],
                                    r['masks'],
                                    verbose=0)

        APs_general.append(ap)
        #print('APs_general', APs_general)
        # get AP values for ring and crack separately
        AP_loop = []
        for i in [1, 2]:
            #print("LOOP START", i)
            if gt_mask[:, :, gt_class_id == i].shape[-1] > 0:
                ap = utils.compute_ap_range(
                    gt_bbox[gt_class_id == i],
                    gt_class_id[gt_class_id == i],
                    gt_mask[:, :, gt_class_id == i],
                    r['rois'][r['class_ids'] == i],
                    r['class_ids'][r['class_ids'] == i],
                    r['scores'][r['class_ids'] == i],
                    r['masks'][:, :, r['class_ids'] == i],
                    verbose=0)
                AP_loop.append(ap)
                #print(ap)
            else:
                ap = np.nan
                AP_loop.append(ap)
                #print(ap)

        #print('AP_loop', AP_loop)
        APs_ring.append(AP_loop[0])
        APs_crack.append(AP_loop[1])

        if verbose:
            info = dataset.image_info[image_id]
            meta = modellib.parse_image_meta(image_meta[np.newaxis, ...])
            #print("{:3} {}   AP: {:.2f}".format(
            #meta["image_id"][0], meta["original_image_shape"][0], ap))

    mAP_general = np.nanmean(APs_general)
    mAP_ring = np.nanmean(APs_ring)
    mAP_crack = np.nanmean(APs_crack)

    return mAP_general, mAP_ring, mAP_crack  #this outputs mAPs per image. May be usefull to keep it like that
def all_steps(dataset, datacfg, dnncfg):
  '''
  ## Single entry point for all the steps for inspecting dataset
  '''

  ## Uncomment for debugging
  # inspectdata.load_and_display_dataset(dataset, datacfg)

  # In[7]:
  log.info("[7]. ---------------")
  log.info("Load and display random images and masks---------------")
  log.info("Bounding Boxes---------------")
  load_and_display_random_sample(dataset, datacfg)

  # In[9]:
  log.info("[9]. ---------------")
  log.info("Resize Images---------------")
  load_and_resize_images(dataset, datacfg, dnncfg)

  # In[10]:
  log.info("[10]. ---------------")
  log.info("Mini Masks---------------")
  image_id = load_mini_masks(dataset, datacfg, dnncfg)

  log.info("image_id: {}".format(image_id))
  # In[11]:
  log.info("[11]. ---------------")
  log.info("Add augmentation and mask resizing---------------")
  add_augmentation(dataset, datacfg, dnncfg, image_id)

  info = dataset.image_info[image_id]
  log.debug("info: {}".format(info))

  # In[12]:
  log.info("[12]. ---------------")
  log.info("Anchors---------------")
  backbone_shapes, anchors, anchors_per_level, anchors_per_cell = generate_anchors(dnncfg)

  # In[13]:
  log.info("[13]. ---------------")
  log.info("Visualize anchors of one cell at the center of the feature map of a specific level---------------")
  visualize_anchors_at_center(dataset, datacfg, dnncfg, backbone_shapes, anchors, anchors_per_level, anchors_per_cell)

  # In[14]:
  log.info("[14]. ---------------")
  log.info("info---------------")
  image_ids = dataset.image_ids
  log.info(image_ids)
  image_index = -1
  image_index = (image_index + 1) % len(image_ids)
  log.info("image_index:{}".format(image_index))

  # In[15]:
  log.info("[15]. ---------------")
  log.info("data_generator---------------")

  ## Data Generator
  # Create data generator
  random_rois = 2000
  g = modellib.data_generator(
      dataset, datacfg, dnncfg, shuffle=True, random_rois=random_rois,
      batch_size=4,
      detection_targets=True)

  # Uncomment to run the generator through a lot of images
  # to catch rare errors
  # for i in range(1000):
  #     log.debug(i)
  #     _, _ = next(g)

  # Get Next Image
  if random_rois:
      [normalized_images, image_meta, rpn_match, rpn_bbox, gt_class_ids, gt_boxes, gt_masks, rpn_rois, rois],     [mrcnn_class_ids, mrcnn_bbox, mrcnn_mask] = next(g)

      customlog("rois", rois)
      customlog("mrcnn_class_ids", mrcnn_class_ids)
      customlog("mrcnn_bbox", mrcnn_bbox)
      customlog("mrcnn_mask", mrcnn_mask)
  else:
      [normalized_images, image_meta, rpn_match, rpn_bbox, gt_boxes, gt_masks], _ = next(g)

  customlog("gt_class_ids", gt_class_ids)
  customlog("gt_boxes", gt_boxes)
  customlog("gt_masks", gt_masks)
  customlog("rpn_match", rpn_match, )
  customlog("rpn_bbox", rpn_bbox)
  image_id = modellib.parse_image_meta(image_meta)["image_id"][0]

  # Remove the last dim in mrcnn_class_ids. It's only added
  # to satisfy Keras restriction on target shape.
  mrcnn_class_ids = mrcnn_class_ids[:,:,0]


  # In[16]:
  log.info("[16]. ---------------")

  b = 0
  # Restore original image (reverse normalization)
  sample_image = modellib.unmold_image(normalized_images[b], dnncfg)

  # Compute anchor shifts.
  indices = np.where(rpn_match[b] == 1)[0]
  refined_anchors = utils.apply_box_deltas(anchors[indices], rpn_bbox[b, :len(indices)] * dnncfg.RPN_BBOX_STD_DEV)
  customlog("anchors", anchors)
  customlog("refined_anchors", refined_anchors)

  # Get list of positive anchors
  positive_anchor_ids = np.where(rpn_match[b] == 1)[0]
  log.info("Positive anchors: {}".format(len(positive_anchor_ids)))
  negative_anchor_ids = np.where(rpn_match[b] == -1)[0]
  log.info("Negative anchors: {}".format(len(negative_anchor_ids)))
  neutral_anchor_ids = np.where(rpn_match[b] == 0)[0]
  log.info("Neutral anchors: {}".format(len(neutral_anchor_ids)))

  log.info("ROI breakdown by class---------------")
  # ROI breakdown by class
  for c, n in zip(dataset.class_names, np.bincount(mrcnn_class_ids[b].flatten())):
      if n:
          log.info("{:23}: {}".format(c[:20], n))

  log.info("Show positive anchors---------------")
  # Show positive anchors
  fig, ax = plt.subplots(1, figsize=(16, 16))
  visualize.draw_boxes(sample_image, boxes=anchors[positive_anchor_ids],
                       refined_boxes=refined_anchors, ax=ax)


  # In[17]:
  log.info("[17]. ---------------")
  log.info("Show negative anchors---------------")
  # Show negative anchors
  visualize.draw_boxes(sample_image, boxes=anchors[negative_anchor_ids])


  # In[18]:
  log.info("[18]. ---------------")
  log.info("Show neutral anchors. They don't contribute to training---------------")
  # Show neutral anchors. They don't contribute to training.
  visualize.draw_boxes(sample_image, boxes=anchors[np.random.choice(neutral_anchor_ids, 100)])


  # In[19]:
  log.info("[19]. ---------------")
  log.info("ROIs---------------")
  ## ROIs
  if random_rois:
      # Class aware bboxes
      bbox_specific = mrcnn_bbox[b, np.arange(mrcnn_bbox.shape[1]), mrcnn_class_ids[b], :]

      # Refined ROIs
      refined_rois = utils.apply_box_deltas(rois[b].astype(np.float32), bbox_specific[:,:4] * dnncfg.BBOX_STD_DEV)

      # Class aware masks
      mask_specific = mrcnn_mask[b, np.arange(mrcnn_mask.shape[1]), :, :, mrcnn_class_ids[b]]

      visualize.draw_rois(sample_image, rois[b], refined_rois, mask_specific, mrcnn_class_ids[b], dataset.class_names)

      # Any repeated ROIs?
      rows = np.ascontiguousarray(rois[b]).view(np.dtype((np.void, rois.dtype.itemsize * rois.shape[-1])))
      _, idx = np.unique(rows, return_index=True)
      log.info("Unique ROIs: {} out of {}".format(len(idx), rois.shape[1]))


  # In[20]:
  log.info("[20]. ---------------")
  log.info("Dispalay ROIs and corresponding masks and bounding boxes---------------")
  if random_rois:
      # Dispalay ROIs and corresponding masks and bounding boxes
      ids = random.sample(range(rois.shape[1]), 8)

      images = []
      titles = []
      for i in ids:
          image = visualize.draw_box(sample_image.copy(), rois[b,i,:4].astype(np.int32), [255, 0, 0])
          image = visualize.draw_box(image, refined_rois[i].astype(np.int64), [0, 255, 0])
          images.append(image)
          titles.append("ROI {}".format(i))
          images.append(mask_specific[i] * 255)
          titles.append(dataset.class_names[mrcnn_class_ids[b,i]][:20])

      visualize.display_images(images, titles, cols=4, cmap="Blues", interpolation="none")


  # In[21]:
  log.info("[21]. ---------------")
  log.info("Check ratio of positive ROIs in a set of images.---------------")
  # Check ratio of positive ROIs in a set of images.
  if random_rois:
      limit = 10
      temp_g = modellib.data_generator(
          dataset, datacfg, dnncfg, shuffle=True, random_rois=10000,
          batch_size=1, detection_targets=True)
      total = 0
      for i in range(limit):
          _, [ids, _, _] = next(temp_g)
          positive_rois = np.sum(ids[0] > 0)
          total += positive_rois
          log.info("{:5} {:5.2f}".format(positive_rois, positive_rois/ids.shape[1]))
      log.info("Average percent: {:.2f}".format(total/(limit*ids.shape[1])))
def compute_batch_ap(dataset, image_ids, verbose=1):
    """
	# Load validation dataset if you need to use this function.
	dataset = slum.slumDataset()
	dataset.load_slum(folder_path,fol)

	"""

    APs = []
    IOUs = []

    for image_id in image_ids:
        # Load image
        image, image_meta, gt_class_id, gt_bbox, gt_mask =\
         modellib.load_image_gt(dataset, config,
                 image_id, use_mini_mask=False)

        # Run object detection
        results = model.detect_molded(image[np.newaxis],
                                      image_meta[np.newaxis],
                                      verbose=0)
        # Compute AP over range 0.5 to 0.95
        r = results[0]

        #merge_masks.
        gt_merge_mask = np.zeros((gt_mask.shape[:2]))
        for i in range(gt_mask.shape[2]):
            gt_merge_mask = np.logical_or(gt_merge_mask, gt_mask[:, :, i])

        pred_merge_mask = np.zeros((r['masks'].shape[:2]))
        for i in range(r['masks'].shape[2]):
            pred_merge_mask = np.logical_or(pred_merge_mask, r['masks'][:, :,
                                                                        i])

        pred_merge_mask = np.expand_dims(pred_merge_mask, 2)
        #print(pred_merge_mask.shape)
        pred_merge_mask, wind, scale, pad, crop = utils.resize_image(
            pred_merge_mask, 1024, 1024)
        #print(pred_merge_mask.shape,gt_merge_mask.shape)

        iou = jaccard_similarity_score(np.squeeze(pred_merge_mask),
                                       gt_merge_mask)

        #mAP at 50
        print("mAP at 50")
        ap = utils.compute_ap_range(gt_bbox,
                                    gt_class_id,
                                    gt_mask,
                                    r['rois'],
                                    r['class_ids'],
                                    r['scores'],
                                    r['masks'],
                                    np.arange(0.5, 1.0),
                                    verbose=0)

        #Make sure ap doesnt go above 1 !
        if ap > 1.0:
            ap = 1.0

        APs.append(ap)
        IOUs.append(iou)

        if verbose:
            info = dataset.image_info[image_id]
            meta = modellib.parse_image_meta(image_meta[np.newaxis, ...])
            print("{:3} {}   AP: {:.2f} Image_id: {}, IOU: {}".format(
                meta["image_id"][0], meta["original_image_shape"][0], ap,
                image_id, iou))
    return APs, IOUs
weights_path = "./model/dataset20190417T1119/mask_rcnn_dataset_0040.h5"

# Or, load the last model you trained
# weights_path = model.find_last()

# Load weights
print("Loading weights ", weights_path)
model.load_weights(weights_path, by_name=True)

image_id = random.choice(dataset.image_ids)
image, image_meta, gt_class_id, gt_bbox, gt_mask =\
    modellib.load_image_gt(dataset, config, image_id, use_mini_mask=False)
info = dataset.image_info[image_id]
print("image ID: {}.{} ({}) {}".format(info["source"], info["id"], image_id,
                                       dataset.image_reference(image_id)))
print("Original image shape: ", modellib.parse_image_meta(image_meta[np.newaxis,...])["original_image_shape"][0])

# Run object detection
results = model.detect_molded(np.expand_dims(image, 0), np.expand_dims(image_meta, 0), verbose=1)

# Display results
r = results[0]
log("gt_class_id", gt_class_id)
log("gt_bbox", gt_bbox)
log("gt_mask", gt_mask)

# Compute AP over range 0.5 to 0.95 and print it
utils.compute_ap_range(gt_bbox, gt_class_id, gt_mask,
                       r['rois'], r['class_ids'], r['scores'], r['masks'],
                       verbose=1)
def inspect_data(dataset, config):
    print("Image Count: {}".format(len(dataset.image_ids)))
    print("Class Count: {}".format(dataset.num_classes))
    for i, info in enumerate(dataset.class_info):
        print("{:3}. {:50}".format(i, info['name']))

    # ## Display Samples
    #
    # Load and display images and masks.

    # In[4]:

    # Load and display random samples
    image_ids = np.random.choice(dataset.image_ids, 4)
    for image_id in image_ids:
        image = dataset.load_image(image_id)
        mask, class_ids = dataset.load_mask(image_id)
        visualize.display_top_masks(image, mask, class_ids,
                                    dataset.class_names)

    # ## Bounding Boxes
    #
    # Rather than using bounding box coordinates provided by the source datasets, we compute the bounding boxes from masks instead. This allows us to handle bounding boxes consistently regardless of the source dataset, and it also makes it easier to resize, rotate, or crop images because we simply generate the bounding boxes from the updates masks rather than computing bounding box transformation for each type of image transformation.

    # In[5]:

    # Load random image and mask.
    image_id = random.choice(dataset.image_ids)
    image = dataset.load_image(image_id)
    mask, class_ids = dataset.load_mask(image_id)
    # Compute Bounding box
    bbox = utils.extract_bboxes(mask)

    # Display image and additional stats
    print("image_id ", image_id, dataset.image_reference(image_id))
    log("image", image)
    log("mask", mask)
    log("class_ids", class_ids)
    log("bbox", bbox)
    # Display image and instances
    visualize.display_instances(image, bbox, mask, class_ids,
                                dataset.class_names)

    # ## Resize Images
    #
    # To support multiple images per batch, images are resized to one size (1024x1024). Aspect ratio is preserved, though. If an image is not square, then zero padding is added at the top/bottom or right/left.

    # In[6]:

    # Load random image and mask.
    image_id = np.random.choice(dataset.image_ids, 1)[0]
    image = dataset.load_image(image_id)
    mask, class_ids = dataset.load_mask(image_id)
    original_shape = image.shape
    # Resize
    image, window, scale, padding, _ = utils.resize_image(
        image,
        min_dim=config.IMAGE_MIN_DIM,
        max_dim=config.IMAGE_MAX_DIM,
        mode=config.IMAGE_RESIZE_MODE)
    mask = utils.resize_mask(mask, scale, padding)
    # Compute Bounding box
    bbox = utils.extract_bboxes(mask)

    # Display image and additional stats
    print("image_id: ", image_id, dataset.image_reference(image_id))
    print("Original shape: ", original_shape)
    log("image", image)
    log("mask", mask)
    log("class_ids", class_ids)
    log("bbox", bbox)
    # Display image and instances
    visualize.display_instances(image, bbox, mask, class_ids,
                                dataset.class_names)

    # ## Mini Masks
    #
    # Instance binary masks can get large when training with high resolution images. For example, if training with 1024x1024 image then the mask of a single instance requires 1MB of memory (Numpy uses bytes for boolean values). If an image has 100 instances then that's 100MB for the masks alone.
    #
    # To improve training speed, we optimize masks by:
    # * We store mask pixels that are inside the object bounding box, rather than a mask of the full image. Most objects are small compared to the image size, so we save space by not storing a lot of zeros around the object.
    # * We resize the mask to a smaller size (e.g. 56x56). For objects that are larger than the selected size we lose a bit of accuracy. But most object annotations are not very accuracy to begin with, so this loss is negligable for most practical purposes. Thie size of the mini_mask can be set in the config class.
    #
    # To visualize the effect of mask resizing, and to verify the code correctness, we visualize some examples.

    # In[7]:

    image_id = np.random.choice(dataset.image_ids, 1)[0]
    image, image_meta, class_ids, bbox, mask = modellib.load_image_gt(
        dataset, config, image_id, use_mini_mask=False)

    log("image", image)
    log("image_meta", image_meta)
    log("class_ids", class_ids)
    log("bbox", bbox)
    log("mask", mask)

    display_images([image] +
                   [mask[:, :, i] for i in range(min(mask.shape[-1], 7))])

    # In[8]:

    visualize.display_instances(image, bbox, mask, class_ids,
                                dataset.class_names)

    # In[9]:

    # Add augmentation and mask resizing.
    image, image_meta, class_ids, bbox, mask = modellib.load_image_gt(
        dataset, config, image_id, augment=True, use_mini_mask=True)
    log("mask", mask)
    display_images([image] +
                   [mask[:, :, i] for i in range(min(mask.shape[-1], 7))])

    # In[10]:

    mask = utils.expand_mask(bbox, mask, image.shape)
    visualize.display_instances(image, bbox, mask, class_ids,
                                dataset.class_names)

    # ## Anchors
    #
    # The order of anchors is important. Use the same order in training and prediction phases. And it must match the order of the convolution execution.
    #
    # For an FPN network, the anchors must be ordered in a way that makes it easy to match anchors to the output of the convolution layers that predict anchor scores and shifts.
    # * Sort by pyramid level first. All anchors of the first level, then all of the second and so on. This makes it easier to separate anchors by level.
    # * Within each level, sort anchors by feature map processing sequence. Typically, a convolution layer processes a feature map starting from top-left and moving right row by row.
    # * For each feature map cell, pick any sorting order for the anchors of different ratios. Here we match the order of ratios passed to the function.
    #
    # **Anchor Stride:**
    # In the FPN architecture, feature maps at the first few layers are high resolution. For example, if the input image is 1024x1024 then the feature meap of the first layer is 256x256, which generates about 200K anchors (256*256*3). These anchors are 32x32 pixels and their stride relative to image pixels is 4 pixels, so there is a lot of overlap. We can reduce the load significantly if we generate anchors for every other cell in the feature map. A stride of 2 will cut the number of anchors by 4, for example.
    #
    # In this implementation we use an anchor stride of 2, which is different from the paper.

    # In[11]:

    # Generate Anchors
    backbone_shapes = modellib.compute_backbone_shapes(config,
                                                       config.IMAGE_SHAPE)
    anchors = utils.generate_pyramid_anchors(config.RPN_ANCHOR_SCALES,
                                             config.RPN_ANCHOR_RATIOS,
                                             backbone_shapes,
                                             config.BACKBONE_STRIDES,
                                             config.RPN_ANCHOR_STRIDE)

    # Print summary of anchors
    num_levels = len(backbone_shapes)
    anchors_per_cell = len(config.RPN_ANCHOR_RATIOS)
    print("Count: ", anchors.shape[0])
    print("Scales: ", config.RPN_ANCHOR_SCALES)
    print("ratios: ", config.RPN_ANCHOR_RATIOS)
    print("Anchors per Cell: ", anchors_per_cell)
    print("Levels: ", num_levels)
    anchors_per_level = []
    for l in range(num_levels):
        num_cells = backbone_shapes[l][0] * backbone_shapes[l][1]
        anchors_per_level.append(anchors_per_cell * num_cells //
                                 config.RPN_ANCHOR_STRIDE**2)
        print("Anchors in Level {}: {}".format(l, anchors_per_level[l]))

    # Visualize anchors of one cell at the center of the feature map of a specific level.

    # In[12]:

    ## Visualize anchors of one cell at the center of the feature map of a specific level

    # Load and draw random image
    image_id = np.random.choice(dataset.image_ids, 1)[0]
    image, image_meta, _, _, _ = modellib.load_image_gt(
        dataset, config, image_id)
    fig, ax = plt.subplots(1, figsize=(10, 10))
    ax.imshow(image)
    levels = len(backbone_shapes)

    for level in range(levels):
        colors = visualize.random_colors(levels)
        # Compute the index of the anchors at the center of the image
        level_start = sum(
            anchors_per_level[:level])  # sum of anchors of previous levels
        level_anchors = anchors[level_start:level_start +
                                anchors_per_level[level]]
        print("Level {}. Anchors: {:6}  Feature map Shape: {}".format(
            level, level_anchors.shape[0], backbone_shapes[level]))
        center_cell = backbone_shapes[level] // 2
        center_cell_index = (center_cell[0] * backbone_shapes[level][1] +
                             center_cell[1])
        level_center = center_cell_index * anchors_per_cell
        center_anchor = anchors_per_cell * (
            (center_cell[0] * backbone_shapes[level][1] / config.RPN_ANCHOR_STRIDE**2) \
            + center_cell[1] / config.RPN_ANCHOR_STRIDE)
        level_center = int(center_anchor)

        # Draw anchors. Brightness show the order in the array, dark to bright.
        for i, rect in enumerate(level_anchors[level_center:level_center +
                                               anchors_per_cell]):
            y1, x1, y2, x2 = rect
            p = patches.Rectangle(
                (x1, y1),
                x2 - x1,
                y2 - y1,
                linewidth=2,
                facecolor='none',
                edgecolor=(i + 1) * np.array(colors[level]) / anchors_per_cell)
            ax.add_patch(p)

    # ## Data Generator
    #

    # In[13]:

    # Create data generator
    random_rois = 2000
    g = modellib.data_generator(dataset,
                                config,
                                shuffle=True,
                                random_rois=random_rois,
                                batch_size=4,
                                detection_targets=True)

    # In[14]:

    # Uncomment to run the generator through a lot of images
    # to catch rare errors
    # for i in range(1000):
    #     print(i)
    #     _, _ = next(g)

    # In[15]:

    # Get Next Image
    if random_rois:
        [
            normalized_images, image_meta, rpn_match, rpn_bbox, gt_class_ids,
            gt_boxes, gt_masks, rpn_rois, rois
        ], [mrcnn_class_ids, mrcnn_bbox, mrcnn_mask] = next(g)

        log("rois", rois)
        log("mrcnn_class_ids", mrcnn_class_ids)
        log("mrcnn_bbox", mrcnn_bbox)
        log("mrcnn_mask", mrcnn_mask)
    else:
        [
            normalized_images, image_meta, rpn_match, rpn_bbox, gt_boxes,
            gt_masks
        ], _ = next(g)

    log("gt_class_ids", gt_class_ids)
    log("gt_boxes", gt_boxes)
    log("gt_masks", gt_masks)
    log(
        "rpn_match",
        rpn_match,
    )
    log("rpn_bbox", rpn_bbox)
    image_id = modellib.parse_image_meta(image_meta)["image_id"][0]
    print("image_id: ", image_id, dataset.image_reference(image_id))

    # Remove the last dim in mrcnn_class_ids. It's only added
    # to satisfy Keras restriction on target shape.
    mrcnn_class_ids = mrcnn_class_ids[:, :, 0]

    # In[16]:

    b = 0

    # Restore original image (reverse normalization)
    sample_image = modellib.unmold_image(normalized_images[b], config)

    # Compute anchor shifts.
    indices = np.where(rpn_match[b] == 1)[0]
    refined_anchors = utils.apply_box_deltas(
        anchors[indices], rpn_bbox[b, :len(indices)] * config.RPN_BBOX_STD_DEV)
    log("anchors", anchors)
    log("refined_anchors", refined_anchors)

    # Get list of positive anchors
    positive_anchor_ids = np.where(rpn_match[b] == 1)[0]
    print("Positive anchors: {}".format(len(positive_anchor_ids)))
    negative_anchor_ids = np.where(rpn_match[b] == -1)[0]
    print("Negative anchors: {}".format(len(negative_anchor_ids)))
    neutral_anchor_ids = np.where(rpn_match[b] == 0)[0]
    print("Neutral anchors: {}".format(len(neutral_anchor_ids)))

    # ROI breakdown by class
    for c, n in zip(dataset.class_names,
                    np.bincount(mrcnn_class_ids[b].flatten())):
        if n:
            print("{:23}: {}".format(c[:20], n))

    # Show positive anchors
    fig, ax = plt.subplots(1, figsize=(16, 16))
    visualize.draw_boxes(sample_image,
                         boxes=anchors[positive_anchor_ids],
                         refined_boxes=refined_anchors,
                         ax=ax)

    # In[17]:

    # Show negative anchors
    visualize.draw_boxes(sample_image, boxes=anchors[negative_anchor_ids])

    # In[18]:

    # Show neutral anchors. They don't contribute to training.
    visualize.draw_boxes(sample_image,
                         boxes=anchors[np.random.choice(
                             neutral_anchor_ids, 100)])

    # ## ROIs

    # In[19]:

    if random_rois:
        # Class aware bboxes
        bbox_specific = mrcnn_bbox[b,
                                   np.arange(mrcnn_bbox.shape[1]),
                                   mrcnn_class_ids[b], :]

        # Refined ROIs
        refined_rois = utils.apply_box_deltas(
            rois[b].astype(np.float32),
            bbox_specific[:, :4] * config.BBOX_STD_DEV)

        # Class aware masks
        mask_specific = mrcnn_mask[b,
                                   np.arange(mrcnn_mask.shape[1]), :, :,
                                   mrcnn_class_ids[b]]

        visualize.draw_rois(sample_image, rois[b], refined_rois, mask_specific,
                            mrcnn_class_ids[b], dataset.class_names)

        # Any repeated ROIs?
        rows = np.ascontiguousarray(rois[b]).view(
            np.dtype((np.void, rois.dtype.itemsize * rois.shape[-1])))
        _, idx = np.unique(rows, return_index=True)
        print("Unique ROIs: {} out of {}".format(len(idx), rois.shape[1]))

    # In[20]:

    if random_rois:
        # Dispalay ROIs and corresponding masks and bounding boxes
        ids = random.sample(range(rois.shape[1]), 8)

        images = []
        titles = []
        for i in ids:
            image = visualize.draw_box(sample_image.copy(),
                                       rois[b, i, :4].astype(np.int32),
                                       [255, 0, 0])
            image = visualize.draw_box(image, refined_rois[i].astype(np.int64),
                                       [0, 255, 0])
            images.append(image)
            titles.append("ROI {}".format(i))
            images.append(mask_specific[i] * 255)
            titles.append(dataset.class_names[mrcnn_class_ids[b, i]][:20])

        display_images(images,
                       titles,
                       cols=4,
                       cmap="Blues",
                       interpolation="none")

    # In[21]:

    # Check ratio of positive ROIs in a set of images.
    if random_rois:
        limit = 10
        temp_g = modellib.data_generator(dataset,
                                         config,
                                         shuffle=True,
                                         random_rois=10000,
                                         batch_size=1,
                                         detection_targets=True)
        total = 0
        for i in range(limit):
            _, [ids, _, _] = next(temp_g)
            positive_rois = np.sum(ids[0] > 0)
            total += positive_rois
            print("{:5} {:5.2f}".format(positive_rois,
                                        positive_rois / ids.shape[1]))
        print("Average percent: {:.2f}".format(total / (limit * ids.shape[1])))