Beispiel #1
0
def test_sparse_encode_unavailable_positivity(algo):
    n_components = 12
    rng = np.random.RandomState(0)
    V = rng.randn(n_components, n_features)  # random init
    V /= np.sum(V**2, axis=1)[:, np.newaxis]
    err_msg = "Positive constraint not supported for '{}' coding method."
    err_msg = err_msg.format(algo)
    with pytest.raises(ValueError, match=err_msg):
        sparse_encode(X, V, algorithm=algo, positive=True)
Beispiel #2
0
def test_sparse_encode_input():
    n_components = 100
    rng = np.random.RandomState(0)
    V = rng.randn(n_components, n_features)  # random init
    V /= np.sum(V**2, axis=1)[:, np.newaxis]
    Xf = check_array(X, order='F')
    for algo in ('lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'):
        a = sparse_encode(X, V, algorithm=algo)
        b = sparse_encode(Xf, V, algorithm=algo)
        assert_array_almost_equal(a, b)
Beispiel #3
0
def test_sparse_encode_error():
    n_components = 12
    rng = np.random.RandomState(0)
    V = rng.randn(n_components, n_features)  # random init
    V /= np.sum(V**2, axis=1)[:, np.newaxis]
    code = sparse_encode(X, V, alpha=0.001)
    assert not np.all(code == 0)
    assert np.sqrt(np.sum((np.dot(code, V) - X)**2)) < 0.1
Beispiel #4
0
def test_sparse_encode_shapes():
    n_components = 12
    rng = np.random.RandomState(0)
    V = rng.randn(n_components, n_features)  # random init
    V /= np.sum(V**2, axis=1)[:, np.newaxis]
    for algo in ('lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'):
        code = sparse_encode(X, V, algorithm=algo)
        assert code.shape == (n_samples, n_components)
Beispiel #5
0
def test_sparse_encode_positivity(algo, positive):
    n_components = 12
    rng = np.random.RandomState(0)
    V = rng.randn(n_components, n_features)  # random init
    V /= np.sum(V**2, axis=1)[:, np.newaxis]
    code = sparse_encode(X, V, algorithm=algo, positive=positive)
    if positive:
        assert (code >= 0).all()
    else:
        assert (code < 0).any()
Beispiel #6
0
def test_sparse_encode_shapes_omp():
    rng = np.random.RandomState(0)
    algorithms = ['omp', 'lasso_lars', 'lasso_cd', 'lars', 'threshold']
    for n_components, n_samples in itertools.product([1, 5], [1, 9]):
        X_ = rng.randn(n_samples, n_features)
        dictionary = rng.randn(n_components, n_features)
        for algorithm, n_jobs in itertools.product(algorithms, [1, 3]):
            code = sparse_encode(X_,
                                 dictionary,
                                 algorithm=algorithm,
                                 n_jobs=n_jobs)
            assert code.shape == (n_samples, n_components)
Beispiel #7
0
def test_dict_learning_online_partial_fit():
    n_components = 12
    rng = np.random.RandomState(0)
    V = rng.randn(n_components, n_features)  # random init
    V /= np.sum(V**2, axis=1)[:, np.newaxis]
    dict1 = MiniBatchDictionaryLearning(n_components,
                                        n_iter=10 * len(X),
                                        batch_size=1,
                                        alpha=1,
                                        shuffle=False,
                                        dict_init=V,
                                        random_state=0).fit(X)
    dict2 = MiniBatchDictionaryLearning(n_components,
                                        alpha=1,
                                        n_iter=1,
                                        dict_init=V,
                                        random_state=0)
    for i in range(10):
        for sample in X:
            dict2.partial_fit(sample[np.newaxis, :])

    assert not np.all(sparse_encode(X, dict1.components_, alpha=1) == 0)
    assert_array_almost_equal(dict1.components_, dict2.components_, decimal=2)
Beispiel #8
0
def test_unknown_method():
    n_components = 12
    rng = np.random.RandomState(0)
    V = rng.randn(n_components, n_features)  # random init
    with pytest.raises(ValueError):
        sparse_encode(X, V, algorithm="<unknown>")