Beispiel #1
0
def test_gibbs_smoke():
    # Check if we don't get NaNs sampling the full digits dataset.
    # Also check that sampling again will yield different results.
    X = Xdigits
    rbm1 = BernoulliRBM(n_components=42,
                        batch_size=40,
                        n_iter=20,
                        random_state=42)
    rbm1.fit(X)
    X_sampled = rbm1.gibbs(X)
    assert_all_finite(X_sampled)
    X_sampled2 = rbm1.gibbs(X)
    assert np.all((X_sampled != X_sampled2).max(axis=1))
Beispiel #2
0
def test_fit_gibbs():
    # Gibbs on the RBM hidden layer should be able to recreate [[0], [1]]
    # from the same input
    rng = np.random.RandomState(42)
    X = np.array([[0.], [1.]])
    rbm1 = BernoulliRBM(n_components=2,
                        batch_size=2,
                        n_iter=42,
                        random_state=rng)
    # you need that much iters
    rbm1.fit(X)
    assert_almost_equal(rbm1.components_,
                        np.array([[0.02649814], [0.02009084]]),
                        decimal=4)
    assert_almost_equal(rbm1.gibbs(X), X)
    return rbm1
Beispiel #3
0
def test_fit_gibbs_sparse():
    # Gibbs on the RBM hidden layer should be able to recreate [[0], [1]] from
    # the same input even when the input is sparse, and test against non-sparse
    rbm1 = test_fit_gibbs()
    rng = np.random.RandomState(42)
    from scipy.sparse import csc_matrix
    X = csc_matrix([[0.], [1.]])
    rbm2 = BernoulliRBM(n_components=2,
                        batch_size=2,
                        n_iter=42,
                        random_state=rng)
    rbm2.fit(X)
    assert_almost_equal(rbm2.components_,
                        np.array([[0.02649814], [0.02009084]]),
                        decimal=4)
    assert_almost_equal(rbm2.gibbs(X), X.toarray())
    assert_almost_equal(rbm1.components_, rbm2.components_)