Beispiel #1
0
def test_one_hot_encoder_feature_names():
    enc = OneHotEncoder()
    X = [['Male', 1, 'girl', 2, 3], ['Female', 41, 'girl', 1, 10],
         ['Male', 51, 'boy', 12, 3], ['Male', 91, 'girl', 21, 30]]

    enc.fit(X)
    feature_names = enc.get_feature_names()
    assert isinstance(feature_names, np.ndarray)

    assert_array_equal([
        'x0_Female', 'x0_Male', 'x1_1', 'x1_41', 'x1_51', 'x1_91', 'x2_boy',
        'x2_girl', 'x3_1', 'x3_2', 'x3_12', 'x3_21', 'x4_3', 'x4_10', 'x4_30'
    ], feature_names)

    feature_names2 = enc.get_feature_names(
        ['one', 'two', 'three', 'four', 'five'])

    assert_array_equal([
        'one_Female', 'one_Male', 'two_1', 'two_41', 'two_51', 'two_91',
        'three_boy', 'three_girl', 'four_1', 'four_2', 'four_12', 'four_21',
        'five_3', 'five_10', 'five_30'
    ], feature_names2)

    with pytest.raises(ValueError, match="input_features should have length"):
        enc.get_feature_names(['one', 'two'])
Beispiel #2
0
def test_one_hot_encoder_feature_names_unicode():
    enc = OneHotEncoder()
    X = np.array([['c❤t1', 'dat2']], dtype=object).T
    enc.fit(X)
    feature_names = enc.get_feature_names()
    assert_array_equal(['x0_c❤t1', 'x0_dat2'], feature_names)
    feature_names = enc.get_feature_names(input_features=['n👍me'])
    assert_array_equal(['n👍me_c❤t1', 'n👍me_dat2'], feature_names)
Beispiel #3
0
def test_one_hot_encoder_feature_names_drop(drop, expected_names):
    X = [['c', 2, 'a'], ['b', 2, 'b']]

    ohe = OneHotEncoder(drop=drop)
    ohe.fit(X)
    feature_names = ohe.get_feature_names()
    assert isinstance(feature_names, np.ndarray)
    assert_array_equal(expected_names, feature_names)
Beispiel #4
0
def test_one_hot_encoder_diff_n_features():
    X = np.array([[0, 2, 1], [1, 0, 3], [1, 0, 2]])
    X2 = np.array([[1, 0]])
    enc = OneHotEncoder()
    enc.fit(X)
    err_msg = ("The number of features in X is different to the number of "
               "features of the fitted data.")
    with pytest.raises(ValueError, match=err_msg):
        enc.transform(X2)
Beispiel #5
0
def test_one_hot_encoder_categories(X, cat_exp, cat_dtype):
    # order of categories should not depend on order of samples
    for Xi in [X, X[::-1]]:
        enc = OneHotEncoder(categories='auto')
        enc.fit(Xi)
        # assert enc.categories == 'auto'
        assert isinstance(enc.categories_, list)
        for res, exp in zip(enc.categories_, cat_exp):
            assert res.tolist() == exp
            assert np.issubdtype(res.dtype, cat_dtype)
Beispiel #6
0
def test_one_hot_encoder_dtype(input_dtype, output_dtype):
    X = np.asarray([[0, 1]], dtype=input_dtype).T
    X_expected = np.asarray([[1, 0], [0, 1]], dtype=output_dtype)

    oh = OneHotEncoder(categories='auto', dtype=output_dtype)
    assert_array_equal(oh.fit_transform(X).toarray(), X_expected)
    assert_array_equal(oh.fit(X).transform(X).toarray(), X_expected)

    oh = OneHotEncoder(categories='auto', dtype=output_dtype, sparse=False)
    assert_array_equal(oh.fit_transform(X), X_expected)
    assert_array_equal(oh.fit(X).transform(X), X_expected)
Beispiel #7
0
def test_one_hot_encoder_dtype_pandas(output_dtype):
    pd = pytest.importorskip('pandas')

    X_df = pd.DataFrame({'A': ['a', 'b'], 'B': [1, 2]})
    X_expected = np.array([[1, 0, 1, 0], [0, 1, 0, 1]], dtype=output_dtype)

    oh = OneHotEncoder(dtype=output_dtype)
    assert_array_equal(oh.fit_transform(X_df).toarray(), X_expected)
    assert_array_equal(oh.fit(X_df).transform(X_df).toarray(), X_expected)

    oh = OneHotEncoder(dtype=output_dtype, sparse=False)
    assert_array_equal(oh.fit_transform(X_df), X_expected)
    assert_array_equal(oh.fit(X_df).transform(X_df), X_expected)
Beispiel #8
0
def test_one_hot_encoder_handle_unknown_strings():
    X = np.array(['11111111', '22', '333', '4444']).reshape((-1, 1))
    X2 = np.array(['55555', '22']).reshape((-1, 1))
    # Non Regression test for the issue #12470
    # Test the ignore option, when categories are numpy string dtype
    # particularly when the known category strings are larger
    # than the unknown category strings
    oh = OneHotEncoder(handle_unknown='ignore')
    oh.fit(X)
    X2_passed = X2.copy()
    assert_array_equal(
        oh.transform(X2_passed).toarray(),
        np.array([[0., 0., 0., 0.], [0., 1., 0., 0.]]))
    # ensure transformed data was not modified in place
    assert_array_equal(X2, X2_passed)
Beispiel #9
0
def test_categories(density, drop):
    ohe_base = OneHotEncoder(sparse=density)
    ohe_test = OneHotEncoder(sparse=density, drop=drop)
    X = [['c', 1, 'a'], ['a', 2, 'b']]
    ohe_base.fit(X)
    ohe_test.fit(X)
    assert_array_equal(ohe_base.categories_, ohe_test.categories_)
    if drop == 'first':
        assert_array_equal(ohe_test.drop_idx_, 0)
    else:
        for drop_cat, drop_idx, cat_list in zip(drop, ohe_test.drop_idx_,
                                                ohe_test.categories_):
            assert cat_list[drop_idx] == drop_cat
    assert isinstance(ohe_test.drop_idx_, np.ndarray)
    assert ohe_test.drop_idx_.dtype == np.int_
Beispiel #10
0
def test_encoder_dtypes_pandas():
    # check dtype (similar to test_categorical_encoder_dtypes for dataframes)
    pd = pytest.importorskip('pandas')

    enc = OneHotEncoder(categories='auto')
    exp = np.array([[1., 0., 1., 0., 1., 0.], [0., 1., 0., 1., 0., 1.]],
                   dtype='float64')

    X = pd.DataFrame({'A': [1, 2], 'B': [3, 4], 'C': [5, 6]}, dtype='int64')
    enc.fit(X)
    assert all([enc.categories_[i].dtype == 'int64' for i in range(2)])
    assert_array_equal(enc.transform(X).toarray(), exp)

    X = pd.DataFrame({'A': [1, 2], 'B': ['a', 'b'], 'C': [3., 4.]})
    X_type = [X['A'].dtype, X['B'].dtype, X['C'].dtype]
    enc.fit(X)
    assert all([enc.categories_[i].dtype == X_type[i] for i in range(3)])
    assert_array_equal(enc.transform(X).toarray(), exp)
Beispiel #11
0
def test_one_hot_encoder_specified_categories(X, X2, cats, cat_dtype):
    enc = OneHotEncoder(categories=cats)
    exp = np.array([[1., 0., 0.], [0., 1., 0.]])
    assert_array_equal(enc.fit_transform(X).toarray(), exp)
    assert list(enc.categories[0]) == list(cats[0])
    assert enc.categories_[0].tolist() == list(cats[0])
    # manually specified categories should have same dtype as
    # the data when coerced from lists
    assert enc.categories_[0].dtype == cat_dtype

    # when specifying categories manually, unknown categories should already
    # raise when fitting
    enc = OneHotEncoder(categories=cats)
    with pytest.raises(ValueError, match="Found unknown categories"):
        enc.fit(X2)
    enc = OneHotEncoder(categories=cats, handle_unknown='ignore')
    exp = np.array([[1., 0., 0.], [0., 0., 0.]])
    assert_array_equal(enc.fit(X2).transform(X2).toarray(), exp)
Beispiel #12
0
def test_one_hot_encoder_handle_unknown():
    X = np.array([[0, 2, 1], [1, 0, 3], [1, 0, 2]])
    X2 = np.array([[4, 1, 1]])

    # Test that one hot encoder raises error for unknown features
    # present during transform.
    oh = OneHotEncoder(handle_unknown='error')
    oh.fit(X)
    with pytest.raises(ValueError, match='Found unknown categories'):
        oh.transform(X2)

    # Test the ignore option, ignores unknown features (giving all 0's)
    oh = OneHotEncoder(handle_unknown='ignore')
    oh.fit(X)
    X2_passed = X2.copy()
    assert_array_equal(
        oh.transform(X2_passed).toarray(),
        np.array([[0., 0., 0., 0., 1., 0., 0.]]))
    # ensure transformed data was not modified in place
    assert_allclose(X2, X2_passed)

    # Raise error if handle_unknown is neither ignore or error.
    oh = OneHotEncoder(handle_unknown='42')
    with pytest.raises(ValueError, match='handle_unknown should be either'):
        oh.fit(X)
Beispiel #13
0
def test_encoder_dtypes():
    # check that dtypes are preserved when determining categories
    enc = OneHotEncoder(categories='auto')
    exp = np.array([[1., 0., 1., 0.], [0., 1., 0., 1.]], dtype='float64')

    for X in [
            np.array([[1, 2], [3, 4]], dtype='int64'),
            np.array([[1, 2], [3, 4]], dtype='float64'),
            np.array([['a', 'b'], ['c', 'd']]),  # string dtype
            np.array([[1, 'a'], [3, 'b']], dtype='object')
    ]:
        enc.fit(X)
        assert all([enc.categories_[i].dtype == X.dtype for i in range(2)])
        assert_array_equal(enc.transform(X).toarray(), exp)

    X = [[1, 2], [3, 4]]
    enc.fit(X)
    assert all([
        np.issubdtype(enc.categories_[i].dtype, np.integer) for i in range(2)
    ])
    assert_array_equal(enc.transform(X).toarray(), exp)

    X = [[1, 'a'], [3, 'b']]
    enc.fit(X)
    assert all([enc.categories_[i].dtype == 'object' for i in range(2)])
    assert_array_equal(enc.transform(X).toarray(), exp)
Beispiel #14
0
def test_one_hot_encoder_raise_missing(X, as_data_frame, handle_unknown):
    if as_data_frame:
        pd = pytest.importorskip('pandas')
        X = pd.DataFrame(X)

    ohe = OneHotEncoder(categories='auto', handle_unknown=handle_unknown)

    with pytest.raises(ValueError, match="Input contains NaN"):
        ohe.fit(X)

    with pytest.raises(ValueError, match="Input contains NaN"):
        ohe.fit_transform(X)

    if as_data_frame:
        X_partial = X.iloc[:1, :]
    else:
        X_partial = X[:1, :]

    ohe.fit(X_partial)

    with pytest.raises(ValueError, match="Input contains NaN"):
        ohe.transform(X)
Beispiel #15
0
def test_one_hot_encoder_unsorted_categories():
    X = np.array([['a', 'b']], dtype=object).T

    enc = OneHotEncoder(categories=[['b', 'a', 'c']])
    exp = np.array([[0., 1., 0.], [1., 0., 0.]])
    assert_array_equal(enc.fit(X).transform(X).toarray(), exp)
    assert_array_equal(enc.fit_transform(X).toarray(), exp)
    assert enc.categories_[0].tolist() == ['b', 'a', 'c']
    assert np.issubdtype(enc.categories_[0].dtype, np.object_)

    # unsorted passed categories still raise for numerical values
    X = np.array([[1, 2]]).T
    enc = OneHotEncoder(categories=[[2, 1, 3]])
    msg = 'Unsorted categories are not supported'
    with pytest.raises(ValueError, match=msg):
        enc.fit_transform(X)
Beispiel #16
0
rt = RandomTreesEmbedding(max_depth=3,
                          n_estimators=n_estimator,
                          random_state=0)

rt_lm = LogisticRegression(max_iter=1000)
pipeline = make_pipeline(rt, rt_lm)
pipeline.fit(X_train, y_train)
y_pred_rt = pipeline.predict_proba(X_test)[:, 1]
fpr_rt_lm, tpr_rt_lm, _ = roc_curve(y_test, y_pred_rt)

# Supervised transformation based on random forests
rf = RandomForestClassifier(max_depth=3, n_estimators=n_estimator)
rf_enc = OneHotEncoder()
rf_lm = LogisticRegression(max_iter=1000)
rf.fit(X_train, y_train)
rf_enc.fit(rf.apply(X_train))
rf_lm.fit(rf_enc.transform(rf.apply(X_train_lr)), y_train_lr)

y_pred_rf_lm = rf_lm.predict_proba(rf_enc.transform(rf.apply(X_test)))[:, 1]
fpr_rf_lm, tpr_rf_lm, _ = roc_curve(y_test, y_pred_rf_lm)

# Supervised transformation based on gradient boosted trees
grd = GradientBoostingClassifier(n_estimators=n_estimator)
grd_enc = OneHotEncoder()
grd_lm = LogisticRegression(max_iter=1000)
grd.fit(X_train, y_train)
grd_enc.fit(grd.apply(X_train)[:, :, 0])
grd_lm.fit(grd_enc.transform(grd.apply(X_train_lr)[:, :, 0]), y_train_lr)

y_pred_grd_lm = grd_lm.predict_proba(
    grd_enc.transform(grd.apply(X_test)[:, :, 0]))[:, 1]
Beispiel #17
0
def test_invalid_drop_length(drop):
    enc = OneHotEncoder(drop=drop)
    err_msg = "`drop` should have length equal to the number"
    with pytest.raises(ValueError, match=err_msg):
        enc.fit([['abc', 2, 55], ['def', 1, 55], ['def', 3, 59]])
Beispiel #18
0
def test_one_hot_encoder_invalid_params(X_fit, params, err_msg):
    enc = OneHotEncoder(**params)
    with pytest.raises(ValueError, match=err_msg):
        enc.fit(X_fit)