Beispiel #1
0
def monophonicWavToMidi(wav_filename, midi_filename):
    # extract wavfile information
    [samplingRate, data] = scipy.io.wavfile.read(wav_filename)
    data = np.sum(data,
                  1)  # average to handle cases with more than one channel
    onsets, durations, pitches = getSignalInformation(
        msignal.Signal(samplingRate, data))

    # construct a midi file from the above info
    track = 0
    channel = 0
    volume = 127
    tempo = 60  # 60 beats per minute or 1 beat per second

    midi = midiutil.MidiFile.MIDIFile(adjust_origin=None)
    midi.addTempo(track, 0, tempo)
    for i in xrange(len(onsets)):
        time = float(onsets[i]) / samplingRate
        duration = float(durations[i]) / samplingRate
        # Formula for MIDI pitch in the beow wiki page
        # https://en.wikipedia.org/wiki/MIDI_Tuning_Standard
        pitch = int(np.round(69 + 12 * np.log2(float(pitches[i]) / 440)))
        midi.addNote(track, channel, pitch, time, duration, volume)
    with open(midi_filename, 'wb') as output_file:
        midi.writeFile(output_file)
Beispiel #2
0
        detection, threshold = data[i], thresholdFunction[i]
        if detection > threshold:  # only accept those greater than the threshold
            left, right = max(0, i - radius), min(len(data), i + radius + 1)
            if detection == np.amax(
                    data[left:right]
            ):  # make sure that we have the max in a radius
                peakLocs.append(i)
    return np.array(peakLocs)


if __name__ == '__main__':
    kiki = 'dataset/Kiki-A-Town-with-an-Ocean-View.wav'
    twinkle = 'dataset/twinkle twinkle little star.wav'
    samplingRate, data = scipy.io.wavfile.read(twinkle)
    data = np.add(data[:, 0], data[:, 1])
    signal = msignal.Signal(samplingRate, data)
    sd = spectral_difference.spectralDifference(signal,
                                                default_params.WINDOW_SIZE,
                                                default_params.HOP_SIZE)
    sdUpsampled = scipy.signal.resample(sd, len(sd) * default_params.HOP_SIZE)
    thresholds = filtering.medianFilter(
        sd, default_params.MEDIAN_FILTER_KERNEL_SIZE,
        default_params.MEDIAN_FILTER_DELTA,
        default_params.MEDIAN_FILTER_LAMBDA)
    peakLocs = findPeaks(sd, thresholds, default_params.PEAK_FINDING_RADIUS)
    onsets = peakLocs * default_params.HOP_SIZE
    plt.figure(1)
    plt.subplot(211)
    plt.plot(sdUpsampled)
    plt.subplot(212)
    plt.plot(data)
Beispiel #3
0
 def getPitch(index):
     return pitch_detection.getGeneralPitch(msignal.Signal(signal.samplingRate, \
       signal.truncate(onsets[index], offsets[index]).data))