def test_2():
    model = MarkovStateModel(verbose=False)
    C = np.array([[4380, 153, 15, 2, 0, 0], [211, 4788, 1, 0, 0, 0],
                  [169, 1, 4604, 226, 0, 0], [3, 13, 158, 4823, 3, 0],
                  [0, 0, 0, 4, 4978, 18], [7, 5, 0, 0, 62, 4926]],
                 dtype=float)
    C = C + 1.0 / 6.0
    model.n_states_ = C.shape[0]
    model.countsmat_ = C
    model.transmat_, model.populations_ = model._fit_mle(C)

    n_trials = 5000
    random = np.random.RandomState(0)
    all_timescales = np.zeros((n_trials, model.n_states_ - 1))
    all_eigenvalues = np.zeros((n_trials, model.n_states_))
    for i in range(n_trials):
        T = np.vstack([random.dirichlet(C[i]) for i in range(C.shape[0])])
        u = _solve_msm_eigensystem(T, k=6)[0]
        all_eigenvalues[i] = u
        all_timescales[i] = -1 / np.log(u[1:])

    pp.figure(figsize=(12, 8))
    for i in range(3):
        pp.subplot(2, 3, i + 1)
        pp.title('Timescale %d' % i)
        kde = scipy.stats.gaussian_kde(all_timescales[:, i])
        xx = np.linspace(all_timescales[:, i].min(), all_timescales[:,
                                                                    i].max())
        r = scipy.stats.norm(loc=model.timescales_[i],
                             scale=model.uncertainty_timescales()[i])
        pp.plot(xx, kde.evaluate(xx), c='r', label='Samples')
        pp.plot(xx, r.pdf(xx), c='b', label='Analytic')

    for i in range(1, 4):
        pp.subplot(2, 3, 3 + i)
        pp.title('Eigenvalue %d' % i)
        kde = scipy.stats.gaussian_kde(all_eigenvalues[:, i])
        xx = np.linspace(all_eigenvalues[:, i].min(), all_eigenvalues[:,
                                                                      i].max())
        r = scipy.stats.norm(loc=model.eigenvalues_[i],
                             scale=model.uncertainty_eigenvalues()[i])
        pp.plot(xx, kde.evaluate(xx), c='r', label='Samples')
        pp.plot(xx, r.pdf(xx), c='b', label='Analytic')

    pp.tight_layout()
    pp.legend(loc=4)
    pp.savefig('test_msm_uncertainty_plots.png')
def test_2():
    model = MarkovStateModel(verbose=False)
    C = np.array([
        [4380, 153,  15,   2,    0,    0],
        [211,  4788, 1,    0,    0,    0],
        [169,  1,    4604, 226,  0,    0],
        [3,    13,   158,  4823, 3,    0],
        [0,    0,    0,    4,    4978, 18],
        [7,    5,    0,    0,    62,   4926]], dtype=float)
    C = C + 1.0 / 6.0
    model.n_states_ = C.shape[0]
    model.countsmat_ = C
    model.transmat_, model.populations_ = model._fit_mle(C)

    n_trials = 5000
    random = np.random.RandomState(0)
    all_timescales = np.zeros((n_trials, model.n_states_ - 1))
    all_eigenvalues = np.zeros((n_trials, model.n_states_))
    for i in range(n_trials):
        T = np.vstack([random.dirichlet(C[i]) for i in range(C.shape[0])])
        u = _solve_msm_eigensystem(T, k=6)[0]
        all_eigenvalues[i] = u
        all_timescales[i] = -1 / np.log(u[1:])

    pp.figure(figsize=(12, 8))
    for i in range(3):
        pp.subplot(2,3,i+1)
        pp.title('Timescale %d' % i)
        kde = scipy.stats.gaussian_kde(all_timescales[:, i])
        xx = np.linspace(all_timescales[:,i].min(), all_timescales[:,i].max())
        r = scipy.stats.norm(loc=model.timescales_[i], scale=model.uncertainty_timescales()[i])
        pp.plot(xx, kde.evaluate(xx), c='r', label='Samples')
        pp.plot(xx, r.pdf(xx), c='b', label='Analytic')

    for i in range(1, 4):
        pp.subplot(2,3,3+i)
        pp.title('Eigenvalue %d' % i)
        kde = scipy.stats.gaussian_kde(all_eigenvalues[:, i])
        xx = np.linspace(all_eigenvalues[:,i].min(), all_eigenvalues[:,i].max())
        r = scipy.stats.norm(loc=model.eigenvalues_[i], scale=model.uncertainty_eigenvalues()[i])
        pp.plot(xx, kde.evaluate(xx), c='r', label='Samples')
        pp.plot(xx, r.pdf(xx), c='b', label='Analytic')

    pp.tight_layout()
    pp.legend(loc=4)
    pp.savefig('test_msm_uncertainty_plots.png')
Beispiel #3
0
        f = open('macrostate_info-%s.txt' % (it + 1), 'w')
        f.write('Cluster centers \n\n')
        for val in clusterer.cluster_centers_:
            f.write(str(val) + '\n')

        f.write('\nPopulations\n\n')
        for val in msm.populations_:
            f.write(str(val) + '\n')

        f.write('\nState labels\n\n')
        for val in msm.state_labels_:
            f.write(str(val) + '\n')

        f.write('\nEigen uncertainty\n\n')
        for val in msm.uncertainty_eigenvalues():
            f.write(str(val) + '\n')

        f.write('\nEigen values\n\n')
        for val in msm.eigenvalues_:
            f.write(str(val) + '\n')

        f.write('\nLeft eigenvectors\n\n')
        for val in msm.left_eigenvectors_:
            f.write(str(val) + '\n')

        f.write('\nRight eigenvectors\n\n')
        for val in msm.right_eigenvectors_:
            f.write(str(val) + '\n')

        f.close()