Beispiel #1
0
def test_ExtractComponent():
    seis = Seismogram()
    seis.live = 1
    seis.data = dmatrix(np.random.rand(3, 6))
    seis.npts = 6
    ts = []
    for i in range(3):
        ts.append(ExtractComponent(seis, i))
    for i in range(3):
        assert (ts[i].data == seis.data[i]).all()
Beispiel #2
0
def get_live_seismogram(ts_size=255, sampling_rate=20.0):
    seis = Seismogram()
    seis.set_live()
    seis.set_as_origin("test", "0", "0", AtomicType.SEISMOGRAM)
    seis.dt = 1 / sampling_rate
    seis.npts = ts_size
    # seis.put('net', 'IU')
    seis.put("npts", ts_size)
    seis.put("sampling_rate", sampling_rate)
    seis.tref = TimeReferenceType.UTC
    seis.t0 = 0
    seis["delta"] = 0.1
    seis["calib"] = 0.1
    seis["site_id"] = bson.objectid.ObjectId()
    seis["source_id"] = bson.objectid.ObjectId()
    seis.data = dmatrix(3, ts_size)
    for i in range(3):
        for j in range(ts_size):
            seis.data[i, j] = np.random.rand()
    return seis
Beispiel #3
0
def get_live_seismogram():
    seis = Seismogram()
    seis.set_live()
    seis.set_as_origin('test', '0', '0', AtomicType.SEISMOGRAM)
    seis.dt = 1 / sampling_rate
    seis.npts = ts_size
    # seis.put('net', 'IU')
    seis.put('npts', ts_size)
    seis.put('sampling_rate', sampling_rate)
    seis.tref = TimeReferenceType.UTC
    seis.t0 = 0
    seis['delta'] = 0.1
    seis['calib'] = 0.1
    seis['site_id'] = bson.objectid.ObjectId()
    seis['channel_id'] = [bson.objectid.ObjectId()]
    seis['source_id'] = bson.objectid.ObjectId()
    seis.data = dmatrix(3, ts_size)
    for i in range(3):
        for j in range(ts_size):
            seis.data[i, j] = np.random.rand()
    return seis
Beispiel #4
0
def test_Seismogram():
    seis = Seismogram()
    seis.npts = 100
    assert seis.data.rows() == 3
    assert seis.data.columns() == 100

    seis.t0 = 0.0
    seis.dt = 0.001
    seis.live = 1
    seis.tref = TimeReferenceType.Relative
    seis.data = dmatrix(np.random.rand(3, 6))
    assert seis.npts != 6
    seis.sync_npts()
    assert seis.npts == 6
    assert seis.npts == seis["npts"]

    seis.npts = 4
    assert seis.data.columns() == 4

    seis.npts = 10
    assert (seis.data[0:3, 4:10] == 0).all()

    seis.data = dmatrix(np.random.rand(3, 100))
    seis.sync_npts()
    seis_copy = pickle.loads(pickle.dumps(seis))
    assert seis_copy.t0 == seis.t0
    assert seis_copy.dt == seis.dt
    assert seis_copy.live == seis.live
    assert seis_copy.tref == seis.tref
    assert (seis_copy.data[:] == seis.data[:]).all()

    # test the += operator
    seis1 = Seismogram(seis)
    seis2 = Seismogram(seis)
    seis1 += seis2
    assert (np.isclose(seis1.data[:], seis.data + seis.data)).all()

    seis.npts = 0
    assert seis.data.rows() == 0

    seis.npts = 100
    for i in range(3):
        for j in range(100):
            if i == 0:
                seis.data[i, j] = 1.0
            else:
                seis.data[i, j] = 0.0
    seis.data[0, 1] = 1.0
    seis.data[0, 2] = 1.0
    seis.data[0, 3] = 0.0
    seis.data[1, 1] = 1.0
    seis.data[1, 2] = 1.0
    seis.data[1, 3] = 0.0
    seis.data[2, 1] = 1.0
    seis.data[2, 2] = 0.0
    seis.data[2, 3] = 1.0

    sc = SphericalCoordinate()
    sc.phi = 0.0
    sc.theta = np.pi / 4
    seis.rotate(sc)
    assert all(np.isclose(seis.data[:, 3], [0, -0.707107, 0.707107]))
    seis.rotate_to_standard()
    assert all(seis.data[:, 3] == [0, 0, 1])
    sc.phi = -np.pi / 4
    seis.data[:, 3] = sc.unit_vector
    seis.rotate(sc)
    assert all(seis.data[:, 3] == [0, 0, 1])
    seis.rotate_to_standard()
    assert all(np.isclose(seis.data[:, 3], [0.5, -0.5, 0.707107]))
    seis.data[:, 3] = [0, 0, 1]

    nu = [np.sqrt(3.0) / 3.0, np.sqrt(3.0) / 3.0, np.sqrt(3.0) / 3.0]
    seis.rotate(nu)
    assert (np.isclose(
        seis.tmatrix,
        np.array([
            [0.70710678, -0.70710678, 0.0],
            [0.40824829, 0.40824829, -0.81649658],
            [0.57735027, 0.57735027, 0.57735027],
        ]),
    )).all()
    assert all(np.isclose(seis.data[:, 0], [0.707107, 0.408248, 0.57735]))
    assert all(np.isclose(seis.data[:, 1], [0, 0, 1.73205]))
    seis.rotate_to_standard()
    assert all(np.isclose(seis.data[:, 0], [1, 0, 0]))
    assert all(np.isclose(seis.data[:, 1], [1, 1, 1]))

    nu = [np.sqrt(3.0) / 3.0, np.sqrt(3.0) / 3.0, np.sqrt(3.0) / 3.0]
    seis.rotate(SphericalCoordinate(nu))
    assert (np.isclose(
        seis.tmatrix,
        np.array([
            [0.70710678, -0.70710678, 0.0],
            [0.40824829, 0.40824829, -0.81649658],
            [0.57735027, 0.57735027, 0.57735027],
        ]),
    )).all()
    assert all(np.isclose(seis.data[:, 0], [0.707107, 0.408248, 0.57735]))
    assert all(np.isclose(seis.data[:, 1], [0, 0, 1.73205]))
    seis.rotate_to_standard()
    assert all(np.isclose(seis.data[:, 0], [1, 0, 0]))
    assert all(np.isclose(seis.data[:, 1], [1, 1, 1]))

    sc.phi = np.pi / 4
    sc.theta = 0.0
    seis.rotate(sc)
    assert (np.isclose(
        seis.tmatrix,
        np.array([
            [0.70710678, -0.70710678, 0.0],
            [0.70710678, 0.70710678, 0.0],
            [0.0, 0.0, 1.0],
        ]),
    )).all()
    assert all(np.isclose(seis.data[:, 0], [0.707107, 0.707107, 0]))
    assert all(np.isclose(seis.data[:, 1], [0, 1.41421, 1]))
    assert all(np.isclose(seis.data[:, 2], [0, 1.41421, 0]))
    assert all(np.isclose(seis.data[:, 3], [0, 0, 1]))
    seis.rotate_to_standard()

    # test for serialization of SphericalCoordinate
    sc_copy = pickle.loads(pickle.dumps(sc))
    assert sc_copy.radius == sc.radius
    assert sc_copy.theta == sc.theta
    assert sc_copy.phi == sc.phi

    a = np.zeros((3, 3))
    a[0][0] = 1.0
    a[0][1] = 1.0
    a[0][2] = 1.0
    a[1][0] = -1.0
    a[1][1] = 1.0
    a[1][2] = 1.0
    a[2][0] = 0.0
    a[2][1] = -1.0
    a[2][2] = 0.0
    seis.transform(a)
    assert all(np.isclose(seis.data[:, 0], [1, -1, 0]))
    assert all(np.isclose(seis.data[:, 1], [3, 1, -1]))
    assert all(np.isclose(seis.data[:, 2], [2, 0, -1]))
    assert all(np.isclose(seis.data[:, 3], [1, 1, 0]))
    seis_copy = pickle.loads(pickle.dumps(seis))
    seis_copy.rotate_to_standard()
    assert all(np.isclose(seis_copy.data[:, 0], [1, 0, 0]))
    assert all(np.isclose(seis_copy.data[:, 1], [1, 1, 1]))
    assert all(np.isclose(seis_copy.data[:, 2], [1, 1, 0]))
    assert all(np.isclose(seis_copy.data[:, 3], [0, 0, 1]))
    seis.rotate_to_standard()

    seis.rotate(np.pi / 4)
    seis.transform(a)
    assert (np.isclose(
        seis.tmatrix,
        np.array([[1.41421, 0.0, 1], [0.0, 1.41421, 1],
                  [-0.707107, -0.707107, 0]]),
    )).all()
    assert all(np.isclose(seis.data[:, 0], [1.41421, 0, -0.707107]))
    assert all(np.isclose(seis.data[:, 1], [2.41421, 2.41421, -1.41421]))
    assert all(np.isclose(seis.data[:, 2], [1.41421, 1.41421, -1.41421]))
    assert all(np.isclose(seis.data[:, 3], [1, 1, 0]))
    seis.rotate_to_standard()
    assert all(np.isclose(seis.data[:, 0], [1, 0, 0]))
    assert all(np.isclose(seis.data[:, 1], [1, 1, 1]))
    assert all(np.isclose(seis.data[:, 2], [1, 1, 0]))
    assert all(np.isclose(seis.data[:, 3], [0, 0, 1]))

    uvec = SlownessVector()
    uvec.ux = 0.17085  # cos(-20deg)/5.5
    uvec.uy = -0.062185  # sin(-20deg)/5.5
    seis.free_surface_transformation(uvec, 5.0, 3.5)
    assert (np.isclose(
        seis.tmatrix,
        np.array([
            [-0.171012, -0.469846, 0],
            [0.115793, -0.0421458, 0.445447],
            [-0.597975, 0.217647, 0.228152],
        ]),
    )).all()

    seis.tmatrix = a
    assert (seis.tmatrix == a).all()

    # test for serialization of SlownessVector
    uvec_copy = pickle.loads(pickle.dumps(uvec))
    assert uvec_copy.ux == uvec.ux
    assert uvec_copy.uy == uvec.uy
    assert uvec_copy.azimuth() == uvec.azimuth()
Beispiel #5
0
def test_CoreSeismogram():
    md = Metadata()
    md["delta"] = 0.01
    md["starttime"] = 0.0
    md["npts"] = 100
    # test metadata constructor
    md["tmatrix"] = np.random.rand(3, 3)
    cseis = _CoreSeismogram(md, False)
    assert (cseis.tmatrix == md["tmatrix"]).all()
    md["tmatrix"] = dmatrix(np.random.rand(3, 3))
    cseis = _CoreSeismogram(md, False)
    assert (cseis.tmatrix == md["tmatrix"]).all()
    md["tmatrix"] = np.random.rand(9)
    cseis = _CoreSeismogram(md, False)
    assert (cseis.tmatrix == md["tmatrix"].reshape(3, 3)).all()
    md["tmatrix"] = np.random.rand(1, 9)
    cseis = _CoreSeismogram(md, False)
    assert (cseis.tmatrix == md["tmatrix"].reshape(3, 3)).all()
    md["tmatrix"] = np.random.rand(9, 1)
    cseis = _CoreSeismogram(md, False)
    assert (cseis.tmatrix == md["tmatrix"].reshape(3, 3)).all()

    md["tmatrix"] = np.random.rand(3, 3).tolist()
    cseis = _CoreSeismogram(md, False)
    assert np.isclose(cseis.tmatrix,
                      np.array(md["tmatrix"]).reshape(3, 3)).all()
    md["tmatrix"] = np.random.rand(9).tolist()
    cseis = _CoreSeismogram(md, False)
    assert np.isclose(cseis.tmatrix,
                      np.array(md["tmatrix"]).reshape(3, 3)).all()

    # test whether the setter of tmatrix updates metadata correctly
    tm = np.random.rand(1, 9)
    cseis.tmatrix = tm
    assert (cseis.tmatrix == tm.reshape(3, 3)).all()
    assert np.isclose(cseis.tmatrix,
                      np.array(cseis["tmatrix"]).reshape(3, 3)).all()
    tm = np.random.rand(9).tolist()
    cseis.tmatrix = tm
    assert np.isclose(cseis.tmatrix, np.array(tm).reshape(3, 3)).all()
    assert np.isclose(cseis.tmatrix,
                      np.array(cseis["tmatrix"]).reshape(3, 3)).all()

    # test exceptions
    md["tmatrix"] = np.random.rand(4, 2)
    with pytest.raises(MsPASSError, match="should be a 3x3 matrix"):
        _CoreSeismogram(md, False)
    md["tmatrix"] = dmatrix(np.random.rand(2, 4))
    with pytest.raises(MsPASSError, match="should be a 3x3 matrix"):
        _CoreSeismogram(md, False)
    md["tmatrix"] = 42
    with pytest.raises(MsPASSError, match="not recognized"):
        _CoreSeismogram(md, False)
    md.erase("tmatrix")
    # tmatrix not defined is taken to default to tmatrix being an identity
    # matrix.  We test that condition here
    cseis = _CoreSeismogram(md, False)
    assert np.isclose(cseis.tmatrix, np.eye(3)).all()
    md["tmatrix"] = {4: 2}
    with pytest.raises(MsPASSError, match="type is not recognized"):
        _CoreSeismogram(md, False)

    md["tmatrix"] = np.random.rand(9).tolist()
    md["tmatrix"][3] = "str"
    with pytest.raises(MsPASSError, match="should be float"):
        _CoreSeismogram(md, False)
    md["tmatrix"] = np.random.rand(3, 4).tolist()
    with pytest.raises(MsPASSError, match="should be a 3x3 list of list"):
        _CoreSeismogram(md, False)
    md["tmatrix"] = [1, 2, 3]
    with pytest.raises(MsPASSError, match="should be a 3x3 list of list"):
        _CoreSeismogram(md, False)
    md["tmatrix"] = np.random.rand(2, 2).tolist()
    with pytest.raises(
            MsPASSError,
            match="should be a list of 9 floats or a 3x3 list of list"):
        _CoreSeismogram(md, False)
    md["tmatrix"] = np.random.rand(3, 3).tolist()
    md["tmatrix"][1][1] = "str"
    with pytest.raises(MsPASSError, match="should be float"):
        _CoreSeismogram(md, False)
Beispiel #6
0
def test_dmatrix():
    dm = dmatrix()
    assert dm.rows() == 0

    dm = dmatrix(9, 4)
    assert dm.rows() == 9
    assert dm.columns() == 4
    assert dm.size == 4 * 9
    assert len(dm) == 9
    assert dm.shape == (9, 4)

    md = [array.array("l", (0 for _ in range(5))) for _ in range(3)]
    for i in range(3):
        for j in range(5):
            md[i][j] = i * 5 + j
    dm = dmatrix(md)
    assert np.equal(dm, md).all()

    dm_c = dmatrix(dm)
    assert (dm_c[:] == dm).all()

    dm_c.zero()
    assert not dm_c[:].any()

    md = np.zeros((7, 4), dtype=np.double, order="F")
    for i in range(7):
        for j in range(4):
            md[i][j] = i * 4 + j
    dm = dmatrix(md)
    assert (dm == md).all()
    assert (dm.transpose() == md.transpose()).all()
    assert (dm * 3.14 == md * 3.14).all()
    assert (2.17 * dm == 2.17 * md).all()
    assert (dm * dm.transpose() == np.matmul(md, md.transpose())).all()

    with pytest.raises(MsPASSError, match="size mismatch"):
        dm * dm

    dm_c = dmatrix(dm)
    dm += dm_c
    assert (dm == md + md).all()
    dm += md
    assert (dm == md + md + md).all()
    assert type(dm) == dmatrix
    dm -= dm_c
    dm -= dm_c
    dm -= md
    assert not dm[:].any()
    assert type(dm) == dmatrix

    dm_c = dmatrix(dm)

    md = np.zeros((7, 4), dtype=np.single, order="C")
    for i in range(7):
        for j in range(4):
            md[i][j] = i * 4 + j
    dm = dmatrix(md)
    assert (dm == md).all()

    md = np.zeros((7, 4), dtype=np.int, order="F")
    for i in range(7):
        for j in range(4):
            md[i][j] = i * 4 + j
    dm = dmatrix(md)
    assert (dm == md).all()

    md = np.zeros((7, 4), dtype=np.unicode_, order="C")
    for i in range(7):
        for j in range(4):
            md[i][j] = i * 4 + j
    dm = dmatrix(md)
    assert (dm == np.float_(md)).all()

    md = np.zeros((53, 37), dtype=np.double, order="C")
    for i in range(53):
        for j in range(37):
            md[i][j] = i * 37 + j
    dm = dmatrix(md)

    assert dm[17, 23] == md[17, 23]
    assert (dm[17] == md[17]).all()
    assert (dm[::] == md[::]).all()
    assert (dm[3::] == md[3::]).all()
    assert (dm[:5:] == md[:5:]).all()
    assert (dm[::7] == md[::7]).all()
    assert (dm[-3::] == md[-3::]).all()
    assert (dm[:-5:] == md[:-5:]).all()
    assert (dm[::-7] == md[::-7]).all()
    assert (dm[11:41:7] == md[11:41:7]).all()
    assert (dm[-11:-41:-7] == md[-11:-41:-7]).all()
    assert (dm[3::, 13] == md[3::, 13]).all()
    assert (dm[19, :5:] == md[19, :5:]).all()
    assert (dm[::-7, ::-11] == md[::-7, ::-11]).all()

    with pytest.raises(IndexError, match="out of bounds for axis 1"):
        dummy = dm[3, 50]
    with pytest.raises(IndexError, match="out of bounds for axis 0"):
        dummy = dm[80]

    with pytest.raises(IndexError, match="out of bounds for axis 1"):
        dm[3, 50] = 1.0
    with pytest.raises(IndexError, match="out of bounds for axis 0"):
        dm[60, 50] = 1

    dm[7, 17] = 3.14
    assert dm[7, 17] == 3.14

    dm[7, 17] = "6.28"
    assert dm[7, 17] == 6.28

    dm[7] = 10
    assert (dm[7] == 10).all()

    dm[::] = md
    assert (dm == md).all()

    dm[:, -7] = 3.14
    assert (dm[:, -7] == 3.14).all()

    dm[17, :] = 3.14
    assert (dm[17, :] == 3.14).all()

    dm[3:7, -19:-12] = 3.14
    assert (dm[3:7, -19:-12] == 3.14).all()
Beispiel #7
0
def setup_function(function):
    ts_size = 255
    sampling_rate = 20.0

    function.dict1 = {
        "network": "IU",
        "station": "ANMO",
        "starttime": obspy.UTCDateTime(2019, 12, 31, 23, 59, 59, 915000),
        "npts": ts_size,
        "sampling_rate": sampling_rate,
        "channel": "BHE",
        "live": True,
        "_id": bson.objectid.ObjectId(),
        "jdate": obspy.UTCDateTime(2019, 12, 31, 23, 59, 59, 915000),
        "date_str": obspy.UTCDateTime(2019, 12, 31, 23, 59, 59, 915000),
        "not_defined_date": obspy.UTCDateTime(2019, 12, 31, 23, 59, 59,
                                              915000),
    }
    function.dict2 = {
        "network": "IU",
        "station": "ANMO",
        "starttime": obspy.UTCDateTime(2019, 12, 31, 23, 59, 59, 915000),
        "npts": ts_size,
        "sampling_rate": sampling_rate,
        "channel": "BHN",
    }
    function.dict3 = {
        "network": "IU",
        "station": "ANMO",
        "starttime": obspy.UTCDateTime(2019, 12, 31, 23, 59, 59, 915000),
        "npts": ts_size,
        "sampling_rate": sampling_rate,
        "channel": "BHZ",
    }
    function.tr1 = obspy.Trace(data=np.random.randint(0, 1000, ts_size),
                               header=function.dict1)
    function.tr2 = obspy.Trace(data=np.random.randint(0, 1000, ts_size),
                               header=function.dict2)
    function.tr3 = obspy.Trace(data=np.random.randint(0, 1000, ts_size),
                               header=function.dict3)
    function.stream = obspy.Stream(
        traces=[function.tr1, function.tr2, function.tr3])

    function.md1 = Metadata()
    function.md1.put("network", "IU")
    function.md1.put("npts", ts_size)
    function.md1.put("sampling_rate", sampling_rate)
    function.md1.put("live", True)

    function.ts1 = TimeSeries()
    function.ts1.data = DoubleVector(np.random.rand(ts_size))
    function.ts1.live = True
    function.ts1.dt = 1 / sampling_rate
    function.ts1.t0 = 0
    function.ts1.npts = ts_size
    # TODO: need to bind the constructor that can do TimeSeries(md1)
    function.ts1.put("net", "IU")
    function.ts1.put("npts", ts_size)
    function.ts1.put("sampling_rate", sampling_rate)

    function.seismogram = Seismogram()
    # TODO: the default of seismogram.tref is UTC which is inconsistent with the default
    # for TimeSeries()
    # TODO: It would be nice to have dmatrix support numpy.ndarray as input
    function.seismogram.data = dmatrix(3, ts_size)
    for i in range(3):
        for j in range(ts_size):
            function.seismogram.data[i, j] = np.random.rand()

    function.seismogram.live = True
    function.seismogram.dt = 1 / sampling_rate
    function.seismogram.t0 = 0
    function.seismogram.npts = ts_size
    # FIXME: if the following key is network, the Seismogram2Stream will error out
    # when calling TimeSeries2Trace internally due to the issue when mdef.is_defined(k)
    # returns True but k is an alias, the mdef.type(k) will error out.
    function.seismogram.put("net", "IU")
    function.seismogram.put("npts", ts_size)
    function.seismogram.put("sampling_rate", sampling_rate)
Beispiel #8
0
def test_CoreSeismogram():
    md = Metadata()
    md['delta'] = 0.01
    md['starttime'] = 0.0
    md['npts'] = 100
    # test metadata constructor
    md['tmatrix'] = np.random.rand(3, 3)
    cseis = _CoreSeismogram(md, False)
    assert (cseis.transformation_matrix == md['tmatrix']).all()
    md['tmatrix'] = dmatrix(np.random.rand(3, 3))
    cseis = _CoreSeismogram(md, False)
    assert (cseis.transformation_matrix == md['tmatrix']).all()
    md['tmatrix'] = np.random.rand(9)
    cseis = _CoreSeismogram(md, False)
    assert (cseis.transformation_matrix == md['tmatrix'].reshape(3, 3)).all()
    md['tmatrix'] = np.random.rand(1, 9)
    cseis = _CoreSeismogram(md, False)
    assert (cseis.transformation_matrix == md['tmatrix'].reshape(3, 3)).all()
    md['tmatrix'] = np.random.rand(9, 1)
    cseis = _CoreSeismogram(md, False)
    assert (cseis.transformation_matrix == md['tmatrix'].reshape(3, 3)).all()

    md['tmatrix'] = np.random.rand(3, 3).tolist()
    cseis = _CoreSeismogram(md, False)
    assert np.isclose(cseis.transformation_matrix,
                      np.array(md['tmatrix']).reshape(3, 3)).all()
    md['tmatrix'] = np.random.rand(9).tolist()
    cseis = _CoreSeismogram(md, False)
    assert np.isclose(cseis.transformation_matrix,
                      np.array(md['tmatrix']).reshape(3, 3)).all()

    # test whether the setter of transformation_matrix updates metadata correctly
    tm = np.random.rand(1, 9)
    cseis.transformation_matrix = tm
    assert (cseis.transformation_matrix == tm.reshape(3, 3)).all()
    assert np.isclose(cseis.transformation_matrix,
                      np.array(cseis['tmatrix']).reshape(3, 3)).all()
    tm = np.random.rand(9).tolist()
    cseis.transformation_matrix = tm
    assert np.isclose(cseis.transformation_matrix,
                      np.array(tm).reshape(3, 3)).all()
    assert np.isclose(cseis.transformation_matrix,
                      np.array(cseis['tmatrix']).reshape(3, 3)).all()

    # test exceptions
    md['tmatrix'] = np.random.rand(4, 2)
    with pytest.raises(MsPASSError, match="should be a 3x3 matrix"):
        _CoreSeismogram(md, False)
    md['tmatrix'] = dmatrix(np.random.rand(2, 4))
    with pytest.raises(MsPASSError, match="should be a 3x3 matrix"):
        _CoreSeismogram(md, False)
    md['tmatrix'] = 42
    with pytest.raises(MsPASSError, match="not recognized"):
        _CoreSeismogram(md, False)
    md.erase('tmatrix')
    with pytest.raises(MsPASSError, match="Error trying to extract"):
        _CoreSeismogram(md, False)
    md['tmatrix'] = {4: 2}
    with pytest.raises(MsPASSError, match="type is not recognized"):
        _CoreSeismogram(md, False)

    md['tmatrix'] = np.random.rand(9).tolist()
    md['tmatrix'][3] = 'str'
    with pytest.raises(MsPASSError, match="should be float"):
        _CoreSeismogram(md, False)
    md['tmatrix'] = np.random.rand(3, 4).tolist()
    with pytest.raises(MsPASSError, match="should be a 3x3 list of list"):
        _CoreSeismogram(md, False)
    md['tmatrix'] = [1, 2, 3]
    with pytest.raises(MsPASSError, match="should be a 3x3 list of list"):
        _CoreSeismogram(md, False)
    md['tmatrix'] = np.random.rand(2, 2).tolist()
    with pytest.raises(
            MsPASSError,
            match="should be a list of 9 floats or a 3x3 list of list"):
        _CoreSeismogram(md, False)
    md['tmatrix'] = np.random.rand(3, 3).tolist()
    md['tmatrix'][1][1] = 'str'
    with pytest.raises(MsPASSError, match="should be float"):
        _CoreSeismogram(md, False)