Beispiel #1
0
def run_first_stage(image, net, scale, threshold):
    """Run P-Net, generate bounding boxes, and do NMS.
    Arguments:
        image: an instance of PIL.Image.
        net: an instance of pytorch's nn.Module, P-Net.
        scale: a float number,
            scale width and height of the image by this number.
        threshold: a float number,
            threshold on the probability of a face when generating
            bounding boxes from predictions of the net.
    Returns:
        a float numpy array of shape [n_boxes, 9],
            bounding boxes with scores and offsets (4 + 1 + 4).
    """

    with torch.no_grad():
        # scale the image and convert it to a float array
        width, height = image.size
        sw, sh = math.ceil(width * scale), math.ceil(height * scale)
        img = image.resize((sw, sh), Image.BILINEAR)
        img = np.asarray(img, 'float32')

        img = Variable(torch.FloatTensor(_preprocess(img)))
        output = net(img)
        probs = output[1].data.numpy()[0, 1, :, :]
        offsets = output[0].data.numpy()
        # probs: probability of a face at each sliding window
        # offsets: transformations to true bounding boxes

        boxes = _generate_bboxes(probs, offsets, scale, threshold)
        if len(boxes) == 0:
            return None

        keep = nms(boxes[:, 0:5], overlap_threshold=0.5)
        return boxes[keep]
Beispiel #2
0
def run_first_stage(image, net, scale, threshold):
    """ 
    Run P-Net, generate bounding boxes, and do NMS.
    """
    width, height = image.size
    sw, sh = math.ceil(width * scale), math.ceil(height * scale)
    img = image.resize((sw, sh), Image.BILINEAR)
    img = np.asarray(img, 'float32')
    img = torch.FloatTensor(_preprocess(img))

    output = net(img)
    probs = output[1].data.numpy()[0, 1, :, :]
    offsets = output[0].data.numpy()

    boxes = _generate_bboxes(probs, offsets, scale, threshold)
    if len(boxes) == 0:
        return None

    keep = nms(boxes[:, 0:5], overlap_threshold=0.5)
    return boxes[keep]
Beispiel #3
0
def detect_faces(image,
                 min_face_size=20.0,
                 thresholds=[0.6, 0.7, 0.8],
                 nms_thresholds=[0.7, 0.7, 0.7]):
    """
    Arguments:
        image: an instance of PIL.Image.
        min_face_size: a float number.
        thresholds: a list of length 3.
        nms_thresholds: a list of length 3.
    Returns:
        two float numpy arrays of shapes [n_boxes, 4] and [n_boxes, 10],
        bounding boxes and facial landmarks.
    """

    with torch.no_grad():
        # LOAD MODELS
        pnet = PNet().to(device)
        rnet = RNet().to(device)
        onet = ONet().to(device)
        onet.eval()

        # BUILD AN IMAGE PYRAMID
        width, height = image.size
        min_length = min(height, width)

        min_detection_size = 12
        factor = 0.707  # sqrt(0.5)

        # scales for scaling the image
        scales = []

        # scales the image so that
        # minimum size that we can detect equals to
        # minimum face size that we want to detect
        m = min_detection_size / min_face_size
        min_length *= m

        factor_count = 0
        while min_length > min_detection_size:
            scales.append(m * factor**factor_count)
            min_length *= factor
            factor_count += 1

        # STAGE 1

        # it will be returned
        bounding_boxes = []

        # run P-Net on different scales
        for s in scales:
            boxes = run_first_stage(image,
                                    pnet,
                                    scale=s,
                                    threshold=thresholds[0])
            bounding_boxes.append(boxes)

        # collect boxes (and offsets, and scores) from different scales
        bounding_boxes = [i for i in bounding_boxes if i is not None]
        bounding_boxes = np.vstack(bounding_boxes)

        keep = nms(bounding_boxes[:, 0:5], nms_thresholds[0])
        bounding_boxes = bounding_boxes[keep]

        # use offsets predicted by pnet to transform bounding boxes
        bounding_boxes = calibrate_box(bounding_boxes[:, 0:5],
                                       bounding_boxes[:, 5:])
        # shape [n_boxes, 5]

        bounding_boxes = convert_to_square(bounding_boxes)
        bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])

        # STAGE 2

        img_boxes = get_image_boxes(bounding_boxes, image, size=24)
        img_boxes = Variable(torch.FloatTensor(img_boxes).to(device))
        output = rnet(img_boxes)
        offsets = output[0].data.cpu().numpy()  # shape [n_boxes, 4]
        probs = output[1].data.cpu().numpy()  # shape [n_boxes, 2]

        keep = np.where(probs[:, 1] > thresholds[1])[0]
        bounding_boxes = bounding_boxes[keep]
        bounding_boxes[:, 4] = probs[keep, 1].reshape((-1, ))
        offsets = offsets[keep]

        keep = nms(bounding_boxes, nms_thresholds[1])
        bounding_boxes = bounding_boxes[keep]
        bounding_boxes = calibrate_box(bounding_boxes, offsets[keep])
        bounding_boxes = convert_to_square(bounding_boxes)
        bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])

        # STAGE 3

        img_boxes = get_image_boxes(bounding_boxes, image, size=48)
        if len(img_boxes) == 0:
            return [], []
        img_boxes = Variable(torch.FloatTensor(img_boxes).to(device))
        output = onet(img_boxes)
        landmarks = output[0].data.cpu().numpy()  # shape [n_boxes, 10]
        offsets = output[1].data.cpu().numpy()  # shape [n_boxes, 4]
        probs = output[2].data.cpu().numpy()  # shape [n_boxes, 2]

        keep = np.where(probs[:, 1] > thresholds[2])[0]
        bounding_boxes = bounding_boxes[keep]
        bounding_boxes[:, 4] = probs[keep, 1].reshape((-1, ))
        offsets = offsets[keep]
        landmarks = landmarks[keep]

        # compute landmark points
        width = bounding_boxes[:, 2] - bounding_boxes[:, 0] + 1.0
        height = bounding_boxes[:, 3] - bounding_boxes[:, 1] + 1.0
        xmin, ymin = bounding_boxes[:, 0], bounding_boxes[:, 1]
        landmarks[:, 0:5] = np.expand_dims(
            xmin, 1) + np.expand_dims(width, 1) * landmarks[:, 0:5]
        landmarks[:, 5:10] = np.expand_dims(
            ymin, 1) + np.expand_dims(height, 1) * landmarks[:, 5:10]

        bounding_boxes = calibrate_box(bounding_boxes, offsets)
        keep = nms(bounding_boxes, nms_thresholds[2], mode='min')
        bounding_boxes = bounding_boxes[keep]
        landmarks = landmarks[keep]

        return bounding_boxes, landmarks
Beispiel #4
0
def detect_faces(image,
                 min_face_size=20.0,
                 thresholds=[0.6, 0.7, 0.8],
                 nms_thresholds=[0.7, 0.7, 0.7]):
    pnet, rnet, onet = load_trained_weights()

    width, height = image.size
    min_length = min(height, width)
    min_detection_size = 12
    factor = math.sqrt(0.5)

    scales = []
    m = min_detection_size / min_face_size
    min_length *= m

    factor_count = 0
    while min_length > min_detection_size:
        scales.append(m * factor**factor_count)
        min_length *= factor
        factor_count += 1

    # STAGE 1
    bounding_boxes = []
    for s in scales:  # run P-Net on different scales
        boxes = run_first_stage(image, pnet, scale=s, threshold=thresholds[0])
        bounding_boxes.append(boxes)
    bounding_boxes = [i for i in bounding_boxes if i is not None]
    bounding_boxes = np.vstack(bounding_boxes)

    keep = nms(bounding_boxes[:, 0:5], nms_thresholds[0])
    bounding_boxes = bounding_boxes[keep]
    bounding_boxes = calibrate_box(bounding_boxes[:, 0:5], bounding_boxes[:,
                                                                          5:])
    bounding_boxes = convert_to_square(bounding_boxes)
    bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])

    # STAGE 2
    img_boxes = get_image_boxes(bounding_boxes, image, size=24)
    img_boxes = torch.FloatTensor(img_boxes)
    output = rnet(img_boxes)
    offsets = output[0].data.numpy()  # shape [n_boxes, 4]
    probs = output[1].data.numpy()  # shape [n_boxes, 2]

    keep = np.where(probs[:, 1] > thresholds[1])[0]
    bounding_boxes = bounding_boxes[keep]
    bounding_boxes[:, 4] = probs[keep, 1].reshape((-1, ))
    offsets = offsets[keep]

    keep = nms(bounding_boxes, nms_thresholds[1])
    bounding_boxes = bounding_boxes[keep]
    bounding_boxes = calibrate_box(bounding_boxes, offsets[keep])
    bounding_boxes = convert_to_square(bounding_boxes)
    bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])

    # STAGE 3
    img_boxes = get_image_boxes(bounding_boxes, image, size=48)
    if len(img_boxes) == 0:
        return [], []
    img_boxes = torch.FloatTensor(img_boxes)
    output = onet(img_boxes)
    landmarks = output[0].data.numpy()  # shape [n_boxes, 10]
    offsets = output[1].data.numpy()  # shape [n_boxes, 4]
    probs = output[2].data.numpy()  # shape [n_boxes, 2]

    keep = np.where(probs[:, 1] > thresholds[2])[0]
    bounding_boxes = bounding_boxes[keep]
    bounding_boxes[:, 4] = probs[keep, 1].reshape((-1, ))
    offsets = offsets[keep]
    landmarks = landmarks[keep]

    # compute landmark points
    width = bounding_boxes[:, 2] - bounding_boxes[:, 0] + 1.0
    height = bounding_boxes[:, 3] - bounding_boxes[:, 1] + 1.0
    xmin, ymin = bounding_boxes[:, 0], bounding_boxes[:, 1]
    landmarks[:, 0:5] = np.expand_dims(
        xmin, 1) + np.expand_dims(width, 1) * landmarks[:, 0:5]
    landmarks[:, 5:10] = np.expand_dims(
        ymin, 1) + np.expand_dims(height, 1) * landmarks[:, 5:10]

    bounding_boxes = calibrate_box(bounding_boxes, offsets)
    keep = nms(bounding_boxes, nms_thresholds[2], mode='min')
    bounding_boxes = bounding_boxes[keep]
    landmarks = landmarks[keep]

    return bounding_boxes, landmarks