Beispiel #1
0
def main(args):
    # p_model_path = '/data/guoch_workspace/mtcnn-pytorch-master/model_store/pnet_epoch.pt'
    # r_model_path = '/data/guoch_workspace/mtcnn-pytorch-master/model_store/rnet_epoch.pt'
    # o_model_path = '/data/guoch_workspace/mtcnn-pytorch-master/model_store/onet_epoch.pt'
    # print("the version of torch is {}".format(torch.__version__))
    dummy_input = getInput(args.img_size)  #获得网络的输入
    # 加载模型
    model = PNet()
    #model = RNet()
    #model = ONet()
    model.load_state_dict(torch.load(args.model_path))
    #model_dict =  model.state_dict()
    #model_dict = pnet.load_state_dict(torch.load(p_model_path))
    # if args.model_path:
    #     if os.path.isfile(args.model_path):
    #         print(("=> start loading checkpoint '{}'".format(args.model_path)))
    #         # state_dict = torch.load(args.model_path)
    #         # print("the best acc is {} in epoch:{}".format(
    #         #     state_dict['epoch_acc'], state_dict['epoch']))
    #         # params = state_dict["model_state_dict"]
    #         # # params={k:v for k,v in state_dict.items() if k in  model_dict.keys()}
    #         # # model_dict.update(params)
    #         # # model.load_state_dict(model_dict)
    #         model.load_state_dict(args.model_path)
    #         print("load cls model successfully")
    #     else:
    #         print(("=> no checkpoint found at '{}'".format(args.model_path)))
    #         return
    model.to('cpu')
    model.eval()
    pre = model(dummy_input)
    print("the pre:{}".format(pre))
    #保存onnx模型
    torch2onnx(args, model, dummy_input)
Beispiel #2
0
def create_mtcnn_net(p_model_path=None,
                     r_model_path=None,
                     o_model_path=None,
                     use_cuda=True):

    pnet, rnet, onet = None, None, None

    if p_model_path is not None:
        pnet = PNet(use_cuda=use_cuda)
        if (use_cuda):
            print('p_model_path:{0}'.format(p_model_path))
            pnet.load_state_dict(torch.load(p_model_path))
            pnet.cuda()
        else:
            # forcing all GPU tensors to be in CPU while loading
            pnet.load_state_dict(
                torch.load(p_model_path,
                           map_location=lambda storage, loc: storage))
        pnet.eval()

    if r_model_path is not None:
        rnet = RNet(use_cuda=use_cuda)
        if (use_cuda):
            print('r_model_path:{0}'.format(r_model_path))
            rnet.load_state_dict(torch.load(r_model_path))
            rnet.cuda()
        else:
            rnet.load_state_dict(
                torch.load(r_model_path,
                           map_location=lambda storage, loc: storage))
        rnet.eval()

    if o_model_path is not None:
        onet = ONet(use_cuda=use_cuda)
        if (use_cuda):
            print('o_model_path:{0}'.format(o_model_path))
            onet.load_state_dict(torch.load(o_model_path))
            onet.cuda()
        else:
            onet.load_state_dict(
                torch.load(o_model_path,
                           map_location=lambda storage, loc: storage))
        onet.eval()

    return pnet, rnet, onet
    def create_mtcnn_net(self):
        ''' Create the mtcnn model '''
        pnet, rnet, onet = None, None, None

        if len(self.args.pnet_file) > 0:
            pnet = PNet(use_cuda=self.args.use_cuda)
            if self.args.use_cuda:
                pnet.load_state_dict(torch.load(self.args.pnet_file))
                pnet = torch.nn.DataParallel(
                    pnet, device_ids=self.args.gpu_ids).cuda()
            else:
                pnet.load_state_dict(torch.load(self.args.pnet_file,\
                                                map_location=lambda storage, loc: storage))
            pnet.eval()

        if len(self.args.rnet_file) > 0:
            rnet = RNet(use_cuda=self.args.use_cuda)
            if self.args.use_cuda:
                rnet.load_state_dict(torch.load(self.args.rnet_file))
                rnet = torch.nn.DataParallel(
                    rnet, device_ids=self.args.gpu_ids).cuda()
            else:
                rnet.load_state_dict(torch.load(self.args.rnet_file,\
                                                map_location=lambda storage, loc: storage))
            rnet.eval()

        if len(self.args.onet_file) > 0:
            onet = ONet(use_cuda=self.args.use_cuda)
            if self.args.use_cuda:
                onet.load_state_dict(torch.load(self.args.onet_file))
                onet = torch.nn.DataParallel(
                    onet, device_ids=self.args.gpu_ids).cuda()
            else:
                onet.load_state_dict(torch.load(self.args.onet_file, \
                                                map_location=lambda storage, loc: storage))
            onet.eval()

        self.pnet_detector = pnet
        self.rnet_detector = rnet
        self.onet_detector = onet
Beispiel #4
0
def train_pnet(model_store_path, end_epoch,imdb,
              batch_size,frequent=10,base_lr=0.01,use_cuda=True):

    if not os.path.exists(model_store_path):
        os.makedirs(model_store_path)

    lossfn = LossFn()
    net = PNet(is_train=True, use_cuda=use_cuda)
    net.train()

    if use_cuda:
        net.cuda()
    optimizer = torch.optim.Adam(net.parameters(), lr=base_lr)

    train_data=TrainImageReader(imdb,12,batch_size,shuffle=True)

    frequent = 10
    for cur_epoch in range(1,end_epoch+1):
        train_data.reset() # shuffle

        for batch_idx,(image,(gt_label,gt_bbox,gt_landmark))in enumerate(train_data):

            im_tensor = [ image_tools.convert_image_to_tensor(image[i,:,:,:]) for i in range(image.shape[0]) ]
            im_tensor = torch.stack(im_tensor)

            im_tensor = Variable(im_tensor)
            gt_label = Variable(torch.from_numpy(gt_label).float())

            gt_bbox = Variable(torch.from_numpy(gt_bbox).float())
            # gt_landmark = Variable(torch.from_numpy(gt_landmark).float())

            if use_cuda:
                im_tensor = im_tensor.cuda()
                gt_label = gt_label.cuda()
                gt_bbox = gt_bbox.cuda()
                # gt_landmark = gt_landmark.cuda()

            cls_pred, box_offset_pred = net(im_tensor)
            # all_loss, cls_loss, offset_loss = lossfn.loss(gt_label=label_y,gt_offset=bbox_y, pred_label=cls_pred, pred_offset=box_offset_pred)

            cls_loss = lossfn.cls_loss(gt_label,cls_pred)
            box_offset_loss = lossfn.box_loss(gt_label,gt_bbox,box_offset_pred)
            # landmark_loss = lossfn.landmark_loss(gt_label,gt_landmark,landmark_offset_pred)

            all_loss = cls_loss*1.0+box_offset_loss*0.5

            if batch_idx %frequent==0:
                accuracy=compute_accuracy(cls_pred,gt_label)

                show1 = accuracy.data.cpu().numpy()
                show2 = cls_loss.data.cpu().numpy()
                show3 = box_offset_loss.data.cpu().numpy()
                # show4 = landmark_loss.data.cpu().numpy()
                show5 = all_loss.data.cpu().numpy()

                print("%s : Epoch: %d, Step: %d, accuracy: %s, det loss: %s, bbox loss: %s, all_loss: %s, lr:%s "%(datetime.datetime.now(),cur_epoch,batch_idx, show1,show2,show3,show5,base_lr))

            optimizer.zero_grad()
            all_loss.backward()
            optimizer.step()

        torch.save(net.state_dict(), os.path.join(model_store_path,"pnet_epoch_%d.pt" % cur_epoch))
        torch.save(net, os.path.join(model_store_path,"pnet_epoch_model_%d.pkl" % cur_epoch))
Beispiel #5
0
def train_pnet(model_store_path,
               end_epoch,
               imdb,
               batch_size,
               frequent=50,
               base_lr=0.01,
               use_cuda=True):

    if not os.path.exists(model_store_path):
        os.makedirs(model_store_path)

    lossfn = LossFn()
    net = PNet(is_train=True, use_cuda=use_cuda)
    checkpoint = torch.load('model_store/pnet_epoch_4.pt')
    net.load_state_dict(checkpoint)
    net.train()
    if use_cuda:
        net.cuda()
    optimizer = torch.optim.Adam(net.parameters(), lr=base_lr)

    train_data = TrainImageReader(imdb, 12, batch_size, shuffle=True)

    for cur_epoch in range(1, end_epoch + 1):
        train_data.reset()
        accuracy_list = []
        cls_loss_list = []
        bbox_loss_list = []
        # landmark_loss_list=[]

        for batch_idx, (image, (gt_label, gt_bbox,
                                gt_landmark)) in enumerate(train_data):

            im_tensor = [
                image_tools.convert_image_to_tensor(image[i, :, :, :])
                for i in range(image.shape[0])
            ]
            im_tensor = torch.stack(im_tensor).float()
            im_tensor = Variable(im_tensor)
            gt_label = Variable(torch.from_numpy(gt_label).float())

            gt_bbox = Variable(torch.from_numpy(gt_bbox).float())
            # gt_landmark = Variable(torch.from_numpy(gt_landmark).float())

            if use_cuda:
                im_tensor = im_tensor.cuda()
                gt_label = gt_label.cuda()
                gt_bbox = gt_bbox.cuda()
                # gt_landmark = gt_landmark.cuda()

            cls_pred, box_offset_pred = net(im_tensor)
            # all_loss, cls_loss, offset_loss = lossfn.loss(gt_label=label_y,gt_offset=bbox_y, pred_label=cls_pred, pred_offset=box_offset_pred)

            cls_loss = lossfn.cls_loss(gt_label, cls_pred)
            box_offset_loss = lossfn.box_loss(gt_label, gt_bbox,
                                              box_offset_pred)
            # landmark_loss = lossfn.landmark_loss(gt_label,gt_landmark,landmark_offset_pred)

            all_loss = cls_loss * 1.0 + box_offset_loss * 0.5

            if batch_idx % frequent == 0:
                accuracy = compute_accuracy(cls_pred, gt_label)

                # show1 = accuracy.data.tolist()[0]
                # show2 = cls_loss.data.tolist()[0]
                # show3 = box_offset_loss.data.tolist()[0]
                # show5 = all_loss.data.tolist()[0]
                show1 = accuracy.item()
                show2 = cls_loss.item()
                show3 = box_offset_loss.item()
                show5 = all_loss.item()

                print(
                    "%s : Epoch: %d, Step: %d, accuracy: %.4f, det loss: %.4f, bbox loss: %.4f, all_loss: %.4f, lr:%s "
                    % (datetime.datetime.now(), cur_epoch, batch_idx, show1,
                       show2, show3, show5, base_lr))
                accuracy_list.append(accuracy)
                cls_loss_list.append(cls_loss)
                bbox_loss_list.append(box_offset_loss)

            optimizer.zero_grad()
            all_loss.backward()
            optimizer.step()

        accuracy_avg = torch.mean(torch.tensor(accuracy_list))
        cls_loss_avg = torch.mean(torch.tensor(cls_loss_list))
        bbox_loss_avg = torch.mean(torch.tensor(bbox_loss_list))
        # landmark_loss_avg = torch.mean(torch.cat(landmark_loss_list))

        # show6 = accuracy_avg.data.tolist()[0]
        # show7 = cls_loss_avg.data.tolist()[0]
        # show8 = bbox_loss_avg.data.tolist()[0]
        show6 = accuracy_avg.item()
        show7 = cls_loss_avg.item()
        show8 = bbox_loss_avg.item()

        print("Epoch: %d, accuracy: %s, cls loss: %s, bbox loss: %s" %
              (cur_epoch, show6, show7, show8))
        # state = {'net': net.state_dict(), 'optimizer': optimizer.state_dict(), 'epoch': cur_epoch}
        torch.save(
            net.state_dict(),
            os.path.join(model_store_path, "pnet_epoch_%d.pt" % cur_epoch))
        torch.save(
            net,
            os.path.join(model_store_path,
                         "pnet_epoch_model_%d.pkl" % cur_epoch))