def main(lfw_list_fn,
         lfw_root,
         save_dir,
         save_img=False,
         show_img=False):

    minsize = 20
    caffe_model_path = "../../model"
    threshold = [0.6, 0.7, 0.7]
    scale_factor = 0.709

    if not osp.exists(save_dir):
        os.makedirs(save_dir)

    fp_rlt = open(osp.join(save_dir, 'lfw_mtcnn_fd_rlt.json'), 'w')

#    result_list = []
    fp_rlt.write('[\n')

    t1 = time.clock()
    detector = MtcnnDetector(caffe_model_path)
    t2 = time.clock()
    print("initFaceDetector() costs %f seconds" % (t2 - t1))

    fp = open(lfw_list_fn, 'r')

    ttl_time = 0.0
    img_cnt = 0

    for line in fp:
        imgpath = line.strip()
        print("\n===>" + imgpath)
        if imgpath == '':
            print 'empty line, not a file name, skip to next'
            continue
        if imgpath[0] == '#':
            print 'skip line starts with #, skip to next'
            continue

        splits = imgpath.split()
        imgpath = splits[0]

        id = 'unkown' if len(splits) < 2 else splits[1]

        if not imgpath.startswith('/'):
            fullpath = osp.join(lfw_root, imgpath)
        else:
            fullpath = imgpath

        rlt = {}
        rlt["filename"] = imgpath
        rlt["faces"] = []
        rlt['face_count'] = 0
        rlt['id'] = id

        try:
            img = cv2.imread(fullpath)
        except:
            print('failed to load image: ' + fullpath)
            rlt["message"] = "failed to load"
            result_list.append(rlt)
            continue

        if img is None:
            print('failed to load image: ' + fullpath)
            rlt["message"] = "failed to load"
            result_list.append(rlt)
            continue

        img_cnt += 1
        t1 = time.clock()

        bboxes, points = detector.detect_face(img, minsize,
                                              threshold, scale_factor)

        t2 = time.clock()
        ttl_time += t2 - t1
        print("detect_face() costs %f seconds" % (t2 - t1))

        if len(bboxes) > 0:
            for (box, pts) in zip(bboxes, points):
                #                box = box.tolist()
                #                pts = pts.tolist()
                tmp = {'rect': box[0:4],
                       'score': box[4],
                       'pts': pts
                       }
                rlt['faces'].append(tmp)

            rlt['face_count'] = len(bboxes)
        rlt['message'] = 'success'
#        result_list.append(rlt)
        s = json.dumps(rlt, indent=2)
        fp_rlt.write(s + ',\n')
#        fp_rlt.write(',\n' + s)

#        print('output bboxes: ' + str(bboxes))
#        print('output points: ' + str(points))
        # toc()

        if bboxes is None:
            continue

        print("\n===> Processed %d images, costs %f seconds, avg time: %f seconds" % (
            img_cnt, ttl_time, ttl_time / img_cnt))

        if save_img or show_img:
            draw_faces(img, bboxes, points)

        if save_img:
            save_name = osp.join(save_dir, osp.basename(imgpath))
            cv2.imwrite(save_name, img)

        if show_img:
            cv2.imshow('img', img)

            ch = cv2.waitKey(0) & 0xFF
            if ch == 27:
                break

#    json.dump(result_list, fp_rlt, indent=2)
#    print fp_rlt.tell()

    # delete the last ','
    if sys.platform is 'win32':
        fp_rlt.seek(-3, 1)
    else:
        fp_rlt.seek(-2, 1)
    fp_rlt.write('\n]')

    fp_rlt.close()
    fp.close()

    if show_img:
        cv2.destroyAllWindows()
def main(save_dir=None, save_img=False, show_img=False):

    minsize = 20
    caffe_model_path = MODEL_PATH
    threshold = [0.6, 0.7, OUTPUT_THRESHOLD]
    scale_factor = 0.709

    if not save_dir:
        save_dir = './fd_rlt'

    if not osp.exists(save_dir):
        os.makedirs(save_dir)

    fp_time = open(osp.join(save_dir, 'fd_time.txt'), 'w')

    t1 = time.clock()
    detector = MtcnnDetector(caffe_model_path)
    t2 = time.clock()

    msg = "initFaceDetector() costs %f seconds" % (t2 - t1)
    print(msg)
    fp_time.write(msg + '\n')

    ttl_time = 0.0
    img_cnt = 0

    for k in range(1, FOLDS_CNT + 1):
        k_str = str(k)
        if k != 10:
            k_str = "0" + k_str

        fn_list = osp.join(FDDB_FOLDS_DIR, "FDDB-fold-" + k_str + ".txt")
        fn_fd_rlt = osp.join(save_dir, "fold-" + k_str + "-out.txt")

        print('===========================')
        print('Process image list: ' + fn_list)
        print('Save results into: ' + fn_fd_rlt)

        fp_list = open(fn_list, 'r')
        fp_fd_rlt = open(fn_fd_rlt, 'w')

        for line in fp_list:
            imgname = line.strip()
            imgpath = osp.join(FDDB_IMG_ROOT_DIR, imgname + ".jpg")

            msg = "---> " + imgpath
            print(msg)
            fp_time.write(msg + 'n')

            img = cv2.imread(imgpath)

            if img is None:
                raise Exception('failed to load image: ' + imgpath)

            resize_factor = 1.0

            if DO_RESIZE:
                print('original image shape: {}'.format(img.shape))
                ht, wd, chs = img.shape

                if ht > wd:
                    resize_factor = float(RESIZED_LONG_SIDE) / ht
                else:
                    resize_factor = float(RESIZED_LONG_SIDE) / wd

                wd_new = int(resize_factor * wd)
                ht_new = int(resize_factor * ht)

                resized_img = cv2.resize(img, (wd_new, ht_new))
                print('resized image shape: {}'.format(resized_img.shape))

                # if show_img:
                #     cv2.imshow('resied_img', resized_img)

                #     ch = cv2.waitKey(0) & 0xFF
                #     if ch == 27:
                #         break
            else:
                resized_img = img

            resize_factor_inv = 1.0 / resize_factor

            img_cnt += 1
            t1 = time.clock()

            bboxes, points = detector.detect_face(resized_img, minsize,
                                                  threshold, scale_factor)

            t2 = time.clock()
            ttl_time += t2 - t1

            msg = "detect_face() costs %f seconds" % (t2 - t1)
            print(msg)
            fp_time.write(msg + '\n')

            fp_fd_rlt.write(imgname + "\n")
            fp_fd_rlt.write(str(len(bboxes)) + "\n")

            print points
            if DO_RESIZE:
                for i in range(len(bboxes)):
                    for j in range(4):
                        bboxes[i][j] *= resize_factor_inv

                    for j in range(10):
                        points[i][j] *= resize_factor_inv

            for i in range(len(bboxes)):
                fp_fd_rlt.write(str(bboxes[i][0]) + " ")
                fp_fd_rlt.write(str(bboxes[i][1]) + " ")
                fp_fd_rlt.write(str(bboxes[i][2] - bboxes[i][0]) + " ")
                fp_fd_rlt.write(str(bboxes[i][3] - bboxes[i][1]) + " ")
                fp_fd_rlt.write(str(bboxes[i][4]) + "\n")

            fp_fd_rlt.flush()

            msg = "===> Processed %d images, costs %f seconds, avg time: %f seconds" % (
                img_cnt, ttl_time, ttl_time / img_cnt)

            print(msg)
            fp_time.write(msg + '\n')
            fp_time.flush()

            if save_img or show_img:
                draw_faces(img, bboxes, points)

            if save_img:
                save_name = osp.join(save_dir, osp.basename(imgpath))
                cv2.imwrite(save_name, img)

            if show_img:
                cv2.imshow('img', img)

                ch = cv2.waitKey(0) & 0xFF
                if ch == 27:
                    break

        fp_list.close()
        fp_fd_rlt.close()

    fp_time.close()

    if show_img:
        cv2.destroyAllWindows()
def main(img_list_fn, root_dir, save_dir, save_img=True, show_img=False):
    MAX_LINE = 500
    minsize = 20
    caffe_model_path = "../../model"
    threshold = [0.6, 0.7, 0.7]
    scale_factor = 0.709

    if not osp.exists(save_dir):
        os.makedirs(save_dir)

    fp = open(img_list_fn, 'r')

    #    if not SAVE_INTO_SEPERATE_JSON:
    #fp_rlt = open(osp.join(save_dir, 'mtcnn_fd_rlt.json'), 'w')

    result_list = []

    t1 = time.clock()
    gpu_id = 7
    detector = MtcnnDetector(caffe_model_path, gpu_id)
    t2 = time.clock()
    print("initFaceDetector() costs %f seconds" % (t2 - t1))

    ttl_time = 0.0
    img_cnt = 0

    for line in fp:
        img_path = line.strip()
        print("\n===>" + img_path)
        if img_path == '':
            print 'empty line, not a file name, skip to next'
            continue
        if img_path[0] == '#':
            print 'skip line starts with #, skip to next'
            continue

        img_path = osp.join(root_dir, img_path)
        print("\nfull path: " + img_path)

        rlt = {}
        rlt["filename"] = img_path
        rlt["faces"] = []
        rlt['face_count'] = 0

        try:
            img = cv2.imread(img_path)
        except:
            print('failed to load image: ' + img_path)
            rlt["message"] = "failed to load"
            result_list.append(rlt)
            continue

        if img is None:
            print('failed to load image: ' + img_path)

            rlt["message"] = "failed to load"
            result_list.append(rlt)
            continue

        img_cnt += 1
        t1 = time.clock()
        img_h = img.shape[0]
        img_w = img.shape[1]

        max_line = 0
        resize_scale = 0
        new_img_h = img_h
        new_img_w = img_w
        if img_h >= img_w:
            max_line = img_h
            if max_line > MAX_LINE:
                resize_scale = max_line / MAX_LINE
                new_img_h = MAX_LINE
                new_img_w = img_w / resize_scale

        if img_w > img_h:
            max_line = img_w
            if max_line > MAX_LINE:
                resize_scale = max_line / MAX_LINE
                new_img_w = MAX_LINE
                new_img_h = img_h / resize_scale

        img = cv2.resize(img, (new_img_w, new_img_h))
        bboxes, points = detector.detect_face(img, minsize, threshold,
                                              scale_factor)

        t2 = time.clock()
        ttl_time += t2 - t1
        print("detect_face() costs %f seconds" % (t2 - t1))

        if bboxes is not None and len(bboxes) > 0:
            for (box, pts) in zip(bboxes, points):
                #                box = box.tolist()
                #                pts = pts.tolist()

                tmp = {'rect': box[0:4], 'score': box[4], 'pts': pts}
                rlt['faces'].append(tmp)

            rlt['face_count'] = len(bboxes)

        rlt['message'] = 'success'

        if SAVE_INTO_SEPERATE_JSON:
            fn_json = osp.join(
                save_dir,
                osp.splitext(osp.basename(img_path))[0] + '.json')
            fp_json = open(fn_json, 'w')
            json.dump(rlt, fp_json, indent=2)
            fp_json.close()
#        else:
        result_list.append(rlt)

        #        print('output bboxes: ' + str(bboxes))
        #        print('output points: ' + str(points))
        # toc()

        print(
            "\n===> Processed %d images, costs %f seconds, avg time: %f seconds"
            % (img_cnt, ttl_time, ttl_time / img_cnt))

        if bboxes is None:
            continue

        if save_img or show_img:
            draw_faces(img, bboxes, points)

        if save_img:

            save_name = osp.join(save_dir, osp.basename(img_path))
            cv2.imwrite(save_name, img)

        if show_img:
            cv2.imshow('img', img)

            ch = cv2.waitKey(0) & 0xFF
            if ch == 27:
                break


#    if not SAVE_INTO_SEPERATE_JSON:
#json.dump(result_list, fp_rlt, indent=2)
    fp_rlt.close()

    fp.close()

    if show_img:
        cv2.destroyAllWindows()
Beispiel #4
0
def main(img_list_fn, save_dir, save_img=True, show_img=False):

    minsize = 20
    caffe_model_path = "./model"
    threshold = [0.6, 0.7, 0.7]
    scale_factor = 0.709

    if not osp.exists(save_dir):
        os.makedirs(save_dir)

    fp_rlt = open(osp.join(save_dir, 'mtcnn_fd_rlt.json'), 'w')

    result_list = []

    t1 = time.clock()
    detector = MtcnnDetector(caffe_model_path)
    t2 = time.clock()
    print("initFaceDetector() costs %f seconds" % (t2 - t1))

    fp = open(img_list_fn, 'r')

    ttl_time = 0.0
    img_cnt = 0

    for line in fp:
        imgpath = line.strip()
        print("\n===>" + imgpath)
        if imgpath == '':
            print 'empty line, not a file name, skip to next'
            continue
        if imgpath[0] == '#':
            print 'skip line starts with #, skip to next'
            continue

        rlt = {}
        rlt["filename"] = imgpath
        rlt["faces"] = []
        rlt['face_count'] = 0

        try:
            img = cv2.imread(imgpath)
        except:
            print('failed to load image: ' + imgpath)
            rlt["message"] = "failed to load"
            result_list.append(rlt)
            continue

        if img is None:
            print('failed to load image: ' + imgpath)

            rlt["message"] = "failed to load"
            result_list.append(rlt)
            continue

        img_cnt += 1
        t1 = time.clock()

        bboxes, points = detector.detect_face(img, minsize, threshold,
                                              scale_factor)

        t2 = time.clock()
        ttl_time += t2 - t1
        print("detect_face() costs %f seconds" % (t2 - t1))

        if bboxes is not None and len(bboxes) > 0:
            for (box, pts) in zip(bboxes, points):
                #                box = box.tolist()
                #                pts = pts.tolist()
                tmp = {'rect': box[0:4], 'score': box[4], 'pts': pts}
                rlt['faces'].append(tmp)

            rlt['face_count'] = len(bboxes)

        rlt['message'] = 'success'
        result_list.append(rlt)

        #        print('output bboxes: ' + str(bboxes))
        #        print('output points: ' + str(points))
        # toc()

        print(
            "\n===> Processed %d images, costs %f seconds, avg time: %f seconds"
            % (img_cnt, ttl_time, ttl_time / img_cnt))

        if bboxes is None:
            continue

        if save_img or show_img:
            draw_faces(img, bboxes, points)

        if save_img:
            save_name = osp.join(save_dir, osp.basename(imgpath))
            cv2.imwrite(save_name, img)

        if show_img:
            cv2.imshow('img', img)

            ch = cv2.waitKey(0) & 0xFF
            if ch == 27:
                break

    json.dump(result_list, fp_rlt, indent=4)
    fp_rlt.close()
    fp.close()

    if show_img:
        cv2.destroyAllWindows()
Beispiel #5
0
def main(vggface_list_fn,
         save_dir,
         save_img=False,
         show_img=False):

    minsize = 20
    caffe_model_path = "../model"
    threshold = [0.6, 0.7, 0.7]
    scale_factor = 0.709

    if not osp.exists(save_dir):
        os.makedirs(save_dir)

    #fp_rlt = open(osp.join(save_dir, 'vggface_mtcnn_fd_rlt.json'), 'w')

    #result_list = []

    t1 = time.clock()
    detector = MtcnnDetector(caffe_model_path)
    t2 = time.clock()
    print("initFaceDetector() costs %f seconds" % (t2 - t1))

    #fp = open(lfw_list_fn, 'r')

    ttl_time = 0.0
    img_cnt = 0
    fp = open(vggface_list_fn,'r')
    all_lines = fp.readlines()
    count = 1
    #lines = all_lines[:100]
    for line in all_lines:
	data = json.loads(line)
        print count 
        count = count + 1
        #img_cnt +=1
        gt = data[u'label'][u'detect'][u'general_d'][u'bbox'][0][u'pts']
        pose = data[u'label'][u'detect'][u'general_d'][u'bbox'][0][u'pose']
	isExists=os.path.exists('./dataset/vgg_face_dataset/vgg_face/%s' % data[u'url'].split('/')[-2])
	if not isExists: 
            os.makedirs('./dataset/vgg_face_dataset/vgg_face/%s' % data[u'url'].split('/')[-2])
#	urllib.urlretrieve(data[u'url'],'./dataset/vgg_face_dataset/vgg_face/%s/%s' % (data[u'url'].split('/')[-2],data[u'url'].split('/')[-1]))
	#print data[u'url'].split('/')[-1][:-4]
        result_list = []	
	resultpath = '%s/%s' % (data[u'url'].split('/')[-2],data[u'url'].split('/')[-1][:-4])
        result_name = resultpath + '.json'
        imgpath = './dataset/vgg_face_dataset/vgg_face/%s/%s' % (data[u'url'].split('/')[-2],data[u'url'].split('/')[-1])
        #print("\n===>" + imgpath)
      
        isExists2=os.path.exists('./result_json/%s' % data[u'url'].split('/')[-2])
        isExists3=os.path.exists(osp.join(save_dir,result_name))
        if not isExists2:
            os.makedirs('./result_json/%s' % data[u'url'].split('/')[-2])
        if isExists3:
            continue
        
        print("\n===>" + imgpath)
        fp_rlt = open(osp.join(save_dir,result_name),'w')
        #id = 'unkown' if len(splits) < 2 else splits[1]
	id = data[u'facecluster']
        rlt = {}
        rlt["filename"] = imgpath
        rlt["faces"] = []
        rlt['face_count'] = 0
        rlt['id'] = id
        rlt['gt'] = gt
        rlt['pose'] = pose

        try:	
	    img = io.imread(data[u'url'])
        #print "img.shape",img.shape
        except:
            print('failed to load image: ' + imgpath)
            rlt["message"] = "failed to load"
            result_list.append(rlt)
            json.dump(result_list,fp_rlt,indent=4)
            fp_rlt.close()
            continue
        #if img is None:
	if len(img.shape) != 3:
	    print('failed to load image: ' + imgpath)
            rlt["message"] = "failed to load"
            result_list.append(rlt)
            json.dump(result_list,fp_rlt,indent=4)
            fp_rlt.close()
            continue

        img_cnt += 1
        t1 = time.clock()

        bboxes, points = detector.detect_face(img, minsize,
                                              threshold, scale_factor)

        t2 = time.clock()
        ttl_time += t2 - t1
        print("detect_face() costs %f seconds" % (t2 - t1))

        if len(bboxes) > 0:
            for (box, pts) in zip(bboxes, points):
                #                box = box.tolist()
                #                pts = pts.tolist()
                tmp = {'rect': box[0:4],
                       'score': box[4],
                       'pts': pts
                       }
                rlt['faces'].append(tmp)

            rlt['face_count'] = len(bboxes)
        rlt['message'] = 'success'
        result_list.append(rlt)

#        print('output bboxes: ' + str(bboxes))
#        print('output points: ' + str(points))
        # toc()

        if bboxes is None:
            json.dump(result_list,fp_rlt,indent=4)
            fp_rlt.close()
            continue

        print("\n===> Processed %d images, costs %f seconds, avg time: %f seconds" % (
            img_cnt, ttl_time, ttl_time / img_cnt))

        if save_img or show_img:
            draw_faces(img, bboxes, points)

        if save_img:
            save_name = osp.join(save_dir, osp.basename(imgpath))
            cv2.imwrite(save_name, img)

        if show_img:
            cv2.imshow('img', img)

            ch = cv2.waitKey(0) & 0xFF
            if ch == 27:
                break

        json.dump(result_list, fp_rlt, indent=4)
        fp_rlt.close()
    fp.close()

    if show_img:
        cv2.destroyAllWindows()