Beispiel #1
0
    def to_directed(self):
        """Return a directed representation of the graph.

        Returns
        -------
        G : MultiDiGraph
            A directed graph with the same name, same nodes, and with
            each edge (u,v,data) replaced by two directed edges
            (u,v,data) and (v,u,data).

        Notes
        -----
        This returns a "deepcopy" of the edge, node, and
        graph attributes which attempts to completely copy
        all of the data and references.

        This is in contrast to the similar D=DiGraph(G) which returns a
        shallow copy of the data.

        See the Python copy module for more information on shallow
        and deep copies, http://docs.python.org/library/copy.html.


        Examples
        --------
        >>> G = nx.Graph()   # or MultiGraph, etc
        >>> G.add_path([0,1])
        >>> H = G.to_directed()
        >>> H.edges()
        [(0, 1), (1, 0)]

        If already directed, return a (deep) copy

        >>> G = nx.DiGraph()   # or MultiDiGraph, etc
        >>> G.add_path([0,1])
        >>> H = G.to_directed()
        >>> H.edges()
        [(0, 1)]
        """
        from multidigraph import MultiDiGraph
        G=MultiDiGraph()
        G.add_nodes_from(self)
        G.add_edges_from( (u,v,key,deepcopy(datadict))
                           for u,nbrs in self.adjacency_iter()
                           for v,keydict in nbrs.iteritems()
                           for key,datadict in keydict.iteritems() )
        G.graph=deepcopy(self.graph)
        G.node=deepcopy(self.node)
        return G
Beispiel #2
0
    def to_directed(self):
        """Return a directed representation of the graph.

        Returns
        -------
        G : MultiDiGraph
            A directed graph with the same name, same nodes, and with
            each edge (u,v,data) replaced by two directed edges
            (u,v,data) and (v,u,data).

        Notes
        -----
        This returns a "deepcopy" of the edge, node, and
        graph attributes which attempts to completely copy
        all of the data and references.

        This is in contrast to the similar D=DiGraph(G) which returns a
        shallow copy of the data.

        See the Python copy module for more information on shallow
        and deep copies, http://docs.python.org/library/copy.html.


        Examples
        --------
        >>> G = nx.Graph()   # or MultiGraph, etc
        >>> G.add_path([0,1])
        >>> H = G.to_directed()
        >>> H.edges()
        [(0, 1), (1, 0)]

        If already directed, return a (deep) copy

        >>> G = nx.DiGraph()   # or MultiDiGraph, etc
        >>> G.add_path([0,1])
        >>> H = G.to_directed()
        >>> H.edges()
        [(0, 1)]
        """
        from multidigraph import MultiDiGraph

        G = MultiDiGraph()
        G.add_nodes_from(self)
        G.add_edges_from(
            (u, v, key, deepcopy(datadict))
            for u, nbrs in self.adjacency_iter()
            for v, keydict in nbrs.iteritems()
            for key, datadict in keydict.iteritems()
        )
        G.graph = deepcopy(self.graph)
        G.node = deepcopy(self.node)
        return G
Beispiel #3
0
    def to_directed(self):
        """Return a directed representation of the graph.
 
        Returns
        -------
        G : MultiDiGraph
            A directed graph with the same name, same nodes, and with
            each edge (u,v,data) replaced by two directed edges
            (u,v,data) and (v,u,data).

        Notes
        -----
        This is similar to MultiDiGraph(self) which returns a shallow copy.  
        self.to_undirected() returns a deepcopy of edge, node and
        graph attributes.

        Examples
        --------
        >>> G = nx.Graph()   # or MultiGraph, etc
        >>> G.add_path([0,1])
        >>> H = G.to_directed()
        >>> H.edges()
        [(0, 1), (1, 0)]

        If already directed, return a (deep) copy

        >>> G = nx.DiGraph()   # or MultiDiGraph, etc
        >>> G.add_path([0,1])
        >>> H = G.to_directed()
        >>> H.edges()
        [(0, 1)]
        """
        from multidigraph import MultiDiGraph
        G=MultiDiGraph()
        G.add_nodes_from(self)
        G.add_edges_from( (u,v,key,deepcopy(datadict)) 
                           for u,nbrs in self.adjacency_iter() 
                           for v,keydict in nbrs.iteritems()
                           for key,datadict in keydict.iteritems() ) 
        G.graph=deepcopy(self.graph)
        G.node=deepcopy(self.node)
        return G
    def to_directed(self):
        """Return a directed representation of the graph.
 
        Returns
        -------
        G : MultiDiGraph
            A directed graph with the same name, same nodes, and with
            each edge (u,v,data) replaced by two directed edges
            (u,v,data) and (v,u,data).

        Notes
        -----
        This is similar to MultiDiGraph(self) which returns a shallow copy.  
        self.to_undirected() returns a deepcopy of edge, node and
        graph attributes.

        Examples
        --------
        >>> G = nx.Graph()   # or MultiGraph, etc
        >>> G.add_path([0,1])
        >>> H = G.to_directed()
        >>> H.edges()
        [(0, 1), (1, 0)]

        If already directed, return a (deep) copy

        >>> G = nx.DiGraph()   # or MultiDiGraph, etc
        >>> G.add_path([0,1])
        >>> H = G.to_directed()
        >>> H.edges()
        [(0, 1)]
        """
        from multidigraph import MultiDiGraph
        G=MultiDiGraph()
        G.add_nodes_from(self)
        G.add_edges_from( (u,v,key,deepcopy(datadict)) 
                           for u,nbrs in self.adjacency_iter() 
                           for v,keydict in nbrs.iteritems()
                           for key,datadict in keydict.iteritems() ) 
        G.graph=deepcopy(self.graph)
        G.node=deepcopy(self.node)
        return G