return (all_data_array,all_categories_array)

if __name__ == '__main__':
    categories = ['Auditorium', 'bar', 'classroom', 'closet', 'movietheater',
        'restaurant', 'other']

    no_code = False

    data_train, category_train = generate_matrix(categories, 'Train', no_code)
    data_test, category_test = generate_matrix(categories, 'Test', no_code = True)

    perceptron = MultilayerPerceptronClassifier( \
          hidden_layer_sizes = (12,), \
          max_iter = 1000, \
        #   random_state = 123,
          algorithm = 'sgd',
          batch_size = 200,
          shuffle = True,
          alpha = 0.00002,\
          learning_rate_init = 0.0001, )
        #   verbose = True,)

    category_predicted = perceptron.fit(data_train, category_train).predict(data_test)
    if not no_code:
        category_predicted = matrix_category_decode(category_predicted)


    accuracy = accuracy_score(category_test, category_predicted)
    cm = confusion_matrix(category_test, category_predicted, categories)

    # cm_title = 'Confusion matrix, without normalization ('+selected_set_name+', '+perceptr_name+')'
Beispiel #2
0
def getResults(iters, hidden_layer_size, not_coded):
    categories = [
        'Auditorium', 'bar', 'classroom', 'closet', 'movietheater',
        'restaurant', 'other'
    ]

    no_code = not_coded

    data_train, category_train = generate_matrix(categories, 'Train', no_code)
    data_test, category_test = generate_matrix(categories,
                                               'Test',
                                               no_code=True)

    perceptron = MultilayerPerceptronClassifier( \
          hidden_layer_sizes = (hidden_layer_size,), \
          max_iter = iters, \
          algorithm = 'sgd',
          batch_size = 200,
          shuffle = True,
          alpha = 0.00002,\
          learning_rate_init = 0.0001,
          verbose=False)

    perceptron_model = perceptron.fit(data_train, category_train)
    category_predicted = perceptron_model.predict(data_test)
    # Probamos en el set de entrenamiento para medir sobreajuste
    category_predicted_train = perceptron_model.predict(data_train)
    if not no_code:
        category_predicted = matrix_category_decode(category_predicted)
        category_predicted_train = matrix_category_decode(
            category_predicted_train)
        category_train = matrix_category_decode(category_train)

    accuracy = accuracy_score(category_test, category_predicted)
    accuracy_train = accuracy_score(category_train, category_predicted_train)

    cm = confusion_matrix(category_test, category_predicted, categories)
    cm_train = confusion_matrix(category_train, category_predicted_train,
                                categories)

    cm_normalized = normalize_matrix(cm)
    cm_train_normalized = normalize_matrix(cm_train)

    coded_title = 'String coded' if no_code else 'List coded'
    coded_name = 'no_coded' if no_code else 'coded'
    outputs = perceptron.n_outputs_
    cm_normalized_title_base = coded_title + ' outputs: ' + str(outputs)
    cm_normalized_title = cm_normalized_title_base + ' Acc. sobre test: ' + str(
        accuracy)
    cm_train_normalized_title = cm_normalized_title_base + ' Acc. sobre train ' + str(
        accuracy_train)

    plt.figure()
    plot_confusion_matrix(cm_normalized,
                          cm_normalized_title,
                          ticks=(categories))

    print 'Accuracy test: ' + str(accuracy)

    variable_names = str(iters) + "_" + str(hidden_layer_size) + "_" + str(
        coded_name)

    plt.savefig('cm_' + variable_names + '_' +
                coded_title.lower().replace(" ", "_") + '_' +
                str(time.time()).replace('.', '') + '.png',
                bbox_inches='tight')
    plt.close()

    plt.figure()
    plot_confusion_matrix(cm_train_normalized,
                          cm_train_normalized_title,
                          ticks=(categories))

    print 'Accuracy train: ' + str(accuracy_train)

    plt.savefig('cm_train_' + variable_names + '_' +
                coded_title.lower().replace(" ", "_") + '_' +
                str(time.time()).replace('.', '') + '.png',
                bbox_inches='tight')
    plt.close()

    with open("results.csv", "a") as myfile:
        myfile.write(
            str(iters) + "," + str(hidden_layer_size) + "," + coded_name +
            "," + str(accuracy) + "," + str(accuracy_train) + "\n")
Beispiel #3
0
        'Auditorium', 'bar', 'classroom', 'closet', 'movietheater',
        'restaurant', 'other'
    ]

    no_code = False

    data_train, category_train = generate_matrix(categories, 'Train', no_code)
    data_test, category_test = generate_matrix(categories,
                                               'Test',
                                               no_code=True)

    perceptron = MultilayerPerceptronClassifier( \
          hidden_layer_sizes = (12,), \
          max_iter = 1000, \
        #   random_state = 123,

          algorithm = 'sgd',
          batch_size = 200,
          shuffle = True,
          alpha = 0.00002,\
          learning_rate_init = 0.0001, )
    #   verbose = True,)

    category_predicted = perceptron.fit(data_train,
                                        category_train).predict(data_test)
    if not no_code:
        category_predicted = matrix_category_decode(category_predicted)

    accuracy = accuracy_score(category_test, category_predicted)
    cm = confusion_matrix(category_test, category_predicted, categories)

    # cm_title = 'Confusion matrix, without normalization ('+selected_set_name+', '+perceptr_name+')'
Beispiel #4
0
def getResults(iters, hidden_layer_size, not_coded):
    categories = ['Auditorium', 'bar', 'classroom', 'closet', 'movietheater',
        'restaurant', 'other']

    no_code = not_coded

    data_train, category_train = generate_matrix(categories, 'Train', no_code)
    data_test, category_test = generate_matrix(categories, 'Test', no_code = True)

    perceptron = MultilayerPerceptronClassifier( \
          hidden_layer_sizes = (hidden_layer_size,), \
          max_iter = iters, \
          algorithm = 'sgd',
          batch_size = 200,
          shuffle = True,
          alpha = 0.00002,\
          learning_rate_init = 0.0001,
          verbose=False)

    perceptron_model = perceptron.fit(data_train, category_train)
    category_predicted = perceptron_model.predict(data_test)
    # Probamos en el set de entrenamiento para medir sobreajuste
    category_predicted_train = perceptron_model.predict(data_train)
    if not no_code:
        category_predicted = matrix_category_decode(category_predicted)
        category_predicted_train = matrix_category_decode(category_predicted_train)
        category_train = matrix_category_decode(category_train)

    accuracy = accuracy_score(category_test, category_predicted)
    accuracy_train = accuracy_score(category_train, category_predicted_train)

    cm = confusion_matrix(category_test, category_predicted, categories)
    cm_train = confusion_matrix(category_train, category_predicted_train, categories)

    cm_normalized = normalize_matrix(cm)
    cm_train_normalized = normalize_matrix(cm_train)

    coded_title = 'String coded' if no_code else 'List coded'
    coded_name = 'no_coded' if no_code else 'coded'
    outputs = perceptron.n_outputs_
    cm_normalized_title_base = coded_title + ' outputs: ' +str(outputs)
    cm_normalized_title = cm_normalized_title_base + ' Acc. sobre test: '+str(accuracy)
    cm_train_normalized_title = cm_normalized_title_base +' Acc. sobre train '+str(accuracy_train)

    plt.figure()
    plot_confusion_matrix(cm_normalized, cm_normalized_title, ticks=(categories))

    print 'Accuracy test: ' + str(accuracy)

    variable_names = str(iters)+"_"+str(hidden_layer_size)+"_"+str(coded_name)

    plt.savefig('cm_'+variable_names+'_'+coded_title.lower().replace(" ", "_")+'_'+str(time.time()).replace('.','')+'.png', bbox_inches='tight')
    plt.close()

    plt.figure()
    plot_confusion_matrix(cm_train_normalized, cm_train_normalized_title, ticks=(categories))

    print 'Accuracy train: ' + str(accuracy_train)

    plt.savefig('cm_train_'+variable_names+'_'+coded_title.lower().replace(" ", "_")+'_'+str(time.time()).replace('.','')+'.png', bbox_inches='tight')
    plt.close()

    with open("results.csv", "a") as myfile:
        myfile.write(str(iters)+","+str(hidden_layer_size)+","+coded_name+","+str(accuracy)+","+str(accuracy_train)+"\n")