Beispiel #1
0
def plot(data, headers=None, pconfig=None):
    """ Return HTML for a MultiQC table.
    :param data: 2D dict, first keys as sample names, then x:y data pairs
    :param headers: list of optional dicts with column config in key:value pairs.
    :return: HTML ready to be inserted into the page
    """
    if headers is None:
        headers = []
    if pconfig is None:
        pconfig = {}

    # Make a datatable object
    dt = table_object.datatable(data, headers, pconfig)

    # Collect unique sample names
    s_names = set()
    for d in dt.data:
        for s_name in d.keys():
            s_names.add(s_name)

    # Make a beeswarm plot if we have lots of samples
    if len(s_names) >= config.max_table_rows and pconfig.get(
            'no_beeswarm') is not True:
        logger.debug('Plotting beeswarm instead of table, {} samples'.format(
            len(s_names)))
        warning = '<p class="text-muted"><span class="glyphicon glyphicon-exclamation-sign" ' \
            'title="A beeswarm plot has been generated instead because of the large number of samples. '\
            'See http://multiqc.info/docs/#tables--beeswarm-plots"'\
            ' data-toggle="tooltip"></span> Showing {} samples.</p>'.format(len(s_names))
        return warning + beeswarm.make_plot(dt)
    else:
        return make_table(dt)
Beispiel #2
0
def plot (data, headers=[], pconfig={}):
    """ Return HTML for a MultiQC table.
    :param data: 2D dict, first keys as sample names, then x:y data pairs
    :param headers: list of optional dicts with column config in key:value pairs.
    :return: HTML ready to be inserted into the page
    """
    
    # Make a datatable object
    dt = table_object.datatable(data, headers, pconfig)
    
    # Collect unique sample names
    s_names = set()
    for d in dt.data:
        for s_name in d.keys():
            s_names.add(s_name)
    
    # Make a beeswarm plot if we have lots of samples
    if len(s_names) >= config.max_table_rows and pconfig.get('no_beeswarm') is not True:
        logger.debug('Plotting beeswarm instead of table, {} samples'.format(len(s_names)))
        warning = """<p>This report is very large.
            A beeswarm plot has been generated instead of a table to aid usability.
            To disable this, set <code>max_table_rows</code> to a very high number
            in your MultiQC config file.</p>"""
        return warning + beeswarm.make_plot( dt )
    else:
        return make_table ( dt )
Beispiel #3
0
def plot (data, headers=[], pconfig={}):
    """ Return HTML for a MultiQC table.
    :param data: 2D dict, first keys as sample names, then x:y data pairs
    :param headers: list of optional dicts with column config in key:value pairs.
    :return: HTML ready to be inserted into the page
    """

    # Make a datatable object
    dt = table_object.datatable(data, headers, pconfig)

    # Collect unique sample names
    s_names = set()
    for d in dt.data:
        for s_name in d.keys():
            s_names.add(s_name)

    # Make a beeswarm plot if we have lots of samples
    if len(s_names) >= config.max_table_rows and pconfig.get('no_beeswarm') is not True:
        logger.debug('Plotting beeswarm instead of table, {} samples'.format(len(s_names)))
        warning = '<p class="text-muted"><span class="glyphicon glyphicon-exclamation-sign" ' \
            'title="A beeswarm plot has been generated instead because of the large number of samples. '\
            'See http://multiqc.info/docs/#tables--beeswarm-plots"'\
            ' data-toggle="tooltip"></span> Showing {} samples.</p>'.format(len(s_names))
        return warning + beeswarm.make_plot( dt )
    else:
        return make_table ( dt )
Beispiel #4
0
def plot (data, headers=[], pconfig={}):
    """ Helper HTML for a beeswarm plot.
    :param data: A list of data dicts
    :param headers: A list of Dicts / OrderedDicts with information
                    for the series, such as colour scales, min and
                    max values etc.
    :return: HTML string
    """

    # Make a datatable object
    dt = table_object.datatable(data, headers, pconfig)

    return make_plot( dt )
Beispiel #5
0
def plot(data, headers=[], pconfig={}):
    """ Helper HTML for a beeswarm plot.
    :param data: A list of data dicts
    :param headers: A list of Dicts / OrderedDicts with information
                    for the series, such as colour scales, min and
                    max values etc.
    :return: HTML string
    """

    # Make a datatable object
    dt = table_object.datatable(data, headers, pconfig)

    return make_plot(dt)
Beispiel #6
0
def plot(data, headers=None, pconfig=None):
    """ Return HTML for a MultiQC table.
    :param data: 2D dict, first keys as sample names, then x:y data pairs
    :param headers: list of optional dicts with column config in key:value pairs.
    :return: HTML ready to be inserted into the page
    """
    if headers is None:
        headers = []
    if pconfig is None:
        pconfig = {}

    # Make a datatable object
    dt = table_object.datatable(data, headers, pconfig)

    # Collect unique sample names
    s_names = set()
    for d in dt.data:
        for s_name in d.keys():
            s_names.add(s_name)

    return make_table(dt)
def plot (data, headers=None, pconfig=None):
    """ Helper HTML for a beeswarm plot.
    :param data: A list of data dicts
    :param headers: A list of Dicts / OrderedDicts with information
                    for the series, such as colour scales, min and
                    max values etc.
    :return: HTML string
    """
    if headers is None:
        headers = []
    if pconfig is None:
        pconfig = {}

    # Allow user to overwrite any given config for this plot
    if 'id' in pconfig and pconfig['id'] and pconfig['id'] in config.custom_plot_config:
        for k, v in config.custom_plot_config[pconfig['id']].items():
            pconfig[k] = v

    # Make a datatable object
    dt = table_object.datatable(data, headers, pconfig)

    return make_plot( dt )