def basic_multivector_operations_3D():
    Print_Function()

    (ex,ey,ez) = MV.setup('e*x|y|z')

    print 'g_{ij} =',MV.metric

    A = MV('A','mv')

    A.Fmt(1,'A')
    A.Fmt(2,'A')
    A.Fmt(3,'A')

    A.even().Fmt(1,'%A_{+}')
    A.odd().Fmt(1,'%A_{-}')

    X = MV('X','vector')
    Y = MV('Y','vector')

    X.Fmt(1,'X')
    Y.Fmt(1,'Y')

    (X*Y).Fmt(2,'X*Y')
    (X^Y).Fmt(2,'X^Y')
    (X|Y).Fmt(2,'X|Y')
    return
Beispiel #2
0
def basic_multivector_operations_2D():
    Print_Function()
    (ex, ey) = MV.setup('e*x|y')

    print('g_{ij} =', MV.metric)

    X = MV('X', 'vector')
    A = MV('A', 'spinor')

    X.Fmt(1, 'X')
    A.Fmt(1, 'A')

    (X | A).Fmt(2, 'X|A')
    (X < A).Fmt(2, 'X<A')
    (A > X).Fmt(2, 'A>X')
    return
Beispiel #3
0
def basic_multivector_operations():
    Print_Function()
    (ex,ey,ez) = MV.setup('e*x|y|z')

    A = MV('A','mv')

    A.Fmt(1,'A')
    A.Fmt(2,'A')
    A.Fmt(3,'A')

    X = MV('X','vector')
    Y = MV('Y','vector')

    print('g_{ij} =\n',MV.metric)

    X.Fmt(1,'X')
    Y.Fmt(1,'Y')

    (X*Y).Fmt(2,'X*Y')
    (X^Y).Fmt(2,'X^Y')
    (X|Y).Fmt(2,'X|Y')

    (ex,ey) = MV.setup('e*x|y')

    print('g_{ij} =\n',MV.metric)

    X = MV('X','vector')
    A = MV('A','spinor')

    X.Fmt(1,'X')
    A.Fmt(1,'A')

    (X|A).Fmt(2,'X|A')
    (X<A).Fmt(2,'X<A')
    (A>X).Fmt(2,'A>X')

    (ex,ey) = MV.setup('e*x|y',metric='[1,1]')

    print('g_{ii} =\n',MV.metric)

    X = MV('X','vector')
    A = MV('A','spinor')

    X.Fmt(1,'X')
    A.Fmt(1,'A')

    (X*A).Fmt(2,'X*A')
    (X|A).Fmt(2,'X|A')
    (X<A).Fmt(2,'X<A')
    (X>A).Fmt(2,'X>A')

    (A*X).Fmt(2,'A*X')
    (A|X).Fmt(2,'A|X')
    (A<X).Fmt(2,'A<X')
    (A>X).Fmt(2,'A>X')
    return
Beispiel #4
0
def basic_multivector_operations_2D_orthogonal():
    Print_Function()
    (ex, ey) = MV.setup('e*x|y', metric='[1,1]')

    print('g_{ii} =', MV.metric)

    X = MV('X', 'vector')
    A = MV('A', 'spinor')

    X.Fmt(1, 'X')
    A.Fmt(1, 'A')

    (X * A).Fmt(2, 'X*A')
    (X | A).Fmt(2, 'X|A')
    (X < A).Fmt(2, 'X<A')
    (X > A).Fmt(2, 'X>A')

    (A * X).Fmt(2, 'A*X')
    (A | X).Fmt(2, 'A|X')
    (A < X).Fmt(2, 'A<X')
    (A > X).Fmt(2, 'A>X')
    return
def main():
    Format()

    (ex, ey, ez) = MV.setup('e*x|y|z')
    A = MV('A', 'mv')
    print(r'\bm{A} =', A)
    A.Fmt(2, r'\bm{A}')
    A.Fmt(3, r'\bm{A}')

    X = (x, y, z) = symbols('x y z')
    (ex, ey, ez, grad) = MV.setup('e_x e_y e_z', metric='[1,1,1]', coords=X)

    f = MV('f', 'scalar', fct=True)
    A = MV('A', 'vector', fct=True)
    B = MV('B', 'grade2', fct=True)

    print(r'\bm{A} =', A)
    print(r'\bm{B} =', B)

    print('grad*f =', grad * f)
    print(r'grad|\bm{A} =', grad | A)
    print(r'grad*\bm{A} =', grad * A)

    print(r'-I*(grad^\bm{A}) =', -MV.I * (grad ^ A))
    print(r'grad*\bm{B} =', grad * B)
    print(r'grad^\bm{B} =', grad ^ B)
    print(r'grad|\bm{B} =', grad | B)

    (a, b, c, d) = MV.setup('a b c d')

    print('g_{ij} =', MV.metric)

    print('\\bm{a|(b*c)} =', a | (b * c))
    print('\\bm{a|(b^c)} =', a | (b ^ c))
    print('\\bm{a|(b^c^d)} =', a | (b ^ c ^ d))
    print('\\bm{a|(b^c)+c|(a^b)+b|(c^a)} =',
          (a | (b ^ c)) + (c | (a ^ b)) + (b | (c ^ a)))
    print('\\bm{a*(b^c)-b*(a^c)+c*(a^b)} =',
          a * (b ^ c) - b * (a ^ c) + c * (a ^ b))
    print(
        '\\bm{a*(b^c^d)-b*(a^c^d)+c*(a^b^d)-d*(a^b^c)} =',
        a * (b ^ c ^ d) - b * (a ^ c ^ d) + c * (a ^ b ^ d) - d * (a ^ b ^ c))
    print('\\bm{(a^b)|(c^d)} =', (a ^ b) | (c ^ d))
    print('\\bm{((a^b)|c)|d} =', ((a ^ b) | c) | d)
    print('\\bm{(a^b)\\times (c^d)} =', Com(a ^ b, c ^ d))

    metric = '1 # #,'+ \
             '# 1 #,'+ \
             '# # 1'

    (e1, e2, e3) = MV.setup('e1 e2 e3', metric)

    E = e1 ^ e2 ^ e3
    Esq = (E * E).scalar()
    print('E =', E)
    print('%E^{2} =', Esq)
    Esq_inv = 1 / Esq

    E1 = (e2 ^ e3) * E
    E2 = (-1) * (e1 ^ e3) * E
    E3 = (e1 ^ e2) * E

    print('E1 = (e2^e3)*E =', E1)
    print('E2 =-(e1^e3)*E =', E2)
    print('E3 = (e1^e2)*E =', E3)

    print('E1|e2 =', (E1 | e2).expand())
    print('E1|e3 =', (E1 | e3).expand())
    print('E2|e1 =', (E2 | e1).expand())
    print('E2|e3 =', (E2 | e3).expand())
    print('E3|e1 =', (E3 | e1).expand())
    print('E3|e2 =', (E3 | e2).expand())
    w = ((E1 | e1).expand()).scalar()
    Esq = expand(Esq)
    print('%(E1\\cdot e1)/E^{2} =', simplify(w / Esq))
    w = ((E2 | e2).expand()).scalar()
    print('%(E2\\cdot e2)/E^{2} =', simplify(w / Esq))
    w = ((E3 | e3).expand()).scalar()
    print('%(E3\\cdot e3)/E^{2} =', simplify(w / Esq))

    X = (r, th, phi) = symbols('r theta phi')
    curv = [[r * cos(phi) * sin(th), r * sin(phi) * sin(th), r * cos(th)],
            [1, r, r * sin(th)]]
    (er, eth, ephi, grad) = MV.setup('e_r e_theta e_phi',
                                     metric='[1,1,1]',
                                     coords=X,
                                     curv=curv)

    f = MV('f', 'scalar', fct=True)
    A = MV('A', 'vector', fct=True)
    B = MV('B', 'grade2', fct=True)

    print('A =', A)
    print('B =', B)

    print('grad*f =', grad * f)
    print('grad|A =', grad | A)
    print('-I*(grad^A) =', -MV.I * (grad ^ A))
    print('grad^B =', grad ^ B)

    vars = symbols('t x y z')
    (g0, g1, g2, g3, grad) = MV.setup('gamma*t|x|y|z',
                                      metric='[1,-1,-1,-1]',
                                      coords=vars)
    I = MV.I

    B = MV('B', 'vector', fct=True)
    E = MV('E', 'vector', fct=True)
    B.set_coef(1, 0, 0)
    E.set_coef(1, 0, 0)
    B *= g0
    E *= g0
    J = MV('J', 'vector', fct=True)
    F = E + I * B

    print('B = \\bm{B\\gamma_{t}} =', B)
    print('E = \\bm{E\\gamma_{t}} =', E)
    print('F = E+IB =', F)
    print('J =', J)
    gradF = grad * F
    gradF.Fmt(3, 'grad*F')

    print('grad*F = J')
    (gradF.grade(1) - J).Fmt(3, '%\\grade{\\nabla F}_{1} -J = 0')
    (gradF.grade(3)).Fmt(3, '%\\grade{\\nabla F}_{3} = 0')

    (alpha, beta, gamma) = symbols('alpha beta gamma')

    (x, t, xp, tp) = symbols("x t x' t'")
    (g0, g1) = MV.setup('gamma*t|x', metric='[1,-1]')

    R = cosh(alpha / 2) + sinh(alpha / 2) * (g0 ^ g1)
    X = t * g0 + x * g1
    Xp = tp * g0 + xp * g1
    print('R =', R)

    print(
        r"#%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} = t'\bm{\gamma'_{t}}+x'\bm{\gamma'_{x}} = R\lp t'\bm{\gamma_{t}}+x'\bm{\gamma_{x}}\rp R^{\dagger}"
    )

    Xpp = R * Xp * R.rev()
    Xpp = Xpp.collect()
    Xpp = Xpp.subs({
        2 * sinh(alpha / 2) * cosh(alpha / 2): sinh(alpha),
        sinh(alpha / 2)**2 + cosh(alpha / 2)**2: cosh(alpha)
    })
    print(r"%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} =", Xpp)
    Xpp = Xpp.subs({sinh(alpha): gamma * beta, cosh(alpha): gamma})

    print(r'%\f{\sinh}{\alpha} = \gamma\beta')
    print(r'%\f{\cosh}{\alpha} = \gamma')

    print(r"%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} =", Xpp.collect())

    vars = symbols('t x y z')
    (g0, g1, g2, g3, grad) = MV.setup('gamma*t|x|y|z',
                                      metric='[1,-1,-1,-1]',
                                      coords=vars)
    I = MV.I
    (m, e) = symbols('m e')

    psi = MV('psi', 'spinor', fct=True)
    A = MV('A', 'vector', fct=True)
    sig_z = g3 * g0
    print('\\bm{A} =', A)
    print('\\bm{\\psi} =', psi)

    dirac_eq = (grad * psi) * I * sig_z - e * A * psi - m * psi * g0
    dirac_eq.simplify()

    dirac_eq.Fmt(
        3,
        r'\nabla \bm{\psi} I \sigma_{z}-e\bm{A}\bm{\psi}-m\bm{\psi}\gamma_{t} = 0'
    )

    xdvi()
    return