Beispiel #1
0
    def __init__(self, *args, **kwargs):
        """
        use the optional key-word arg 'transform' to supply a 
        2x2 transform-matrix
        """
        try:
            transform = kwargs.pop('transform')
        except KeyError:
            transform = Matrix.eye(2)

        if isinstance(transform, GridHelperCurveLinear):
            assert 'Itransform' not in kwargs, (
                'no Itransform when transform is a %s' % type(transform))
            grid_helper = transform
        elif callable(transform):
            grid_helper = GridHelperCurveLinear(
                [transform, kwargs.pop('Itransform')])
        else:
            transform = Matrix(transform)

            try:
                Itransform = kwargs.pop('Itransform')
            except KeyError:
                Itransform = transform**(-1)

            grid_helper = GridHelperCurveLinear([
                self.makeTransform(transform),
                self.makeTransform(Itransform)
            ])

            kwargs['grid_helper'] = grid_helper
        mpl_toolkits.axisartist.Axes.__init__(self, *args, **kwargs)
Beispiel #2
0
def _subSquare(vectors, var, full=False):
    """
    given a series of vectors, this function calculates:
        (variances,vectors)=numpy.linalg.eigh(vectors.H*vectors)
    it's a seperate function because if there are less vectors 
    than dimensions the process can be accelerated, it just takes some dancing

    it is based on this:

    >>> vectors=Matrix(helpers.ascomplex(numpy.random.randn(
    ...     numpy.random.randint(1,10),numpy.random.randint(1,10),2
    ... )))
    >>> cov = vectors.H*vectors
    >>> Xcov = vectors*vectors.H 
    >>> (Xval,Xvec) = numpy.linalg.eigh(Xcov)
    >>> vec = Xvec.H*vectors
    >>> assert vec.H*vec == cov
    """
    vectors = Matrix(vectors)
    shape = vectors.shape

    if not all(shape):
        val = numpy.zeros([0])
        vec = numpy.zeros([0, shape[1]])
        return (val, vec)
    
    eig = numpy.linalg.eigh

    if shape[0] >= shape[1] or full or not vectors.any() or (var < 0).any():
        scaled = Matrix(var[:, None]*numpy.array(vectors))
        
        cov = vectors.H*scaled
        
        (val, vec) = eig(cov)
        vec = vec.H

    elif not var.any():
        cov = vectors.H*vectors
        (_,vec) = eig(cov)
        vec = vec.H
        val = numpy.zeros(vec.shape[0])

    else:
        scaled = Matrix(scipy.sqrt(var)[:, None]*numpy.array(vectors))
        Xcov = scaled*scaled.H        
        #Xcov = var[:,None]*numpy.array(vectors)*vectors.H
        
        (_, Xvec) = eig(Xcov)
        
        Xscaled = (Xvec.H*scaled)
        val = helpers.mag2(Xscaled)

        vec = numpy.array(Xscaled)/scipy.sqrt(val[:, numpy.newaxis])

    
    return (val, vec)
Beispiel #3
0
def _subSquare(vectors, var, full=False):
    """
    given a series of vectors, this function calculates:
        (variances,vectors)=numpy.linalg.eigh(vectors.H*vectors)
    it's a seperate function because if there are less vectors 
    than dimensions the process can be accelerated, it just takes some dancing

    it is based on this:

    >>> vectors=Matrix(helpers.ascomplex(numpy.random.randn(
    ...     numpy.random.randint(1,10),numpy.random.randint(1,10),2
    ... )))
    >>> cov = vectors.H*vectors
    >>> Xcov = vectors*vectors.H 
    >>> (Xval,Xvec) = numpy.linalg.eigh(Xcov)
    >>> vec = Xvec.H*vectors
    >>> assert vec.H*vec == cov
    """
    vectors = Matrix(vectors)
    shape = vectors.shape

    if not all(shape):
        val = numpy.zeros([0])
        vec = numpy.zeros([0, shape[1]])
        return (val, vec)

    eig = numpy.linalg.eigh

    if shape[0] >= shape[1] or full or not vectors.any() or (var < 0).any():
        scaled = Matrix(var[:, None] * numpy.array(vectors))

        cov = vectors.H * scaled

        (val, vec) = eig(cov)
        vec = vec.H

    elif not var.any():
        cov = vectors.H * vectors
        (_, vec) = eig(cov)
        vec = vec.H
        val = numpy.zeros(vec.shape[0])

    else:
        scaled = Matrix(scipy.sqrt(var)[:, None] * numpy.array(vectors))
        Xcov = scaled * scaled.H
        #Xcov = var[:,None]*numpy.array(vectors)*vectors.H

        (_, Xvec) = eig(Xcov)

        Xscaled = (Xvec.H * scaled)
        val = helpers.mag2(Xscaled)

        vec = numpy.array(Xscaled) / scipy.sqrt(val[:, numpy.newaxis])

    return (val, vec)
Beispiel #4
0
    def makeObjects(flat=None, ndim=None, seed=None):
        if seed is None:
            seed = randint(1, 1e6)

        numpy.random.seed(seed)
        randn = numpy.random.randn

        if ndim is None:
            ndim = randint(0, 20)

        shapes = {
            None: lambda: max(randint(-ndim, ndim), 0),
            True: lambda: randint(1, ndim),
            False: lambda: 0,
        }

        triple = lambda x: [x, x, x]

        if flat in shapes:
            flat = [item() for item in triple(shapes[flat])]

        elif isinstance(flat, int):
            flat = triple(flat)

        assert all(f <= ndim
                   for f in flat), "flatness can't be larger than ndim"

        rvec = lambda n=1, ndim=ndim: Matrix(randn(n, ndim))

        A, B, C = [Mvn.rand([ndim - F, ndim]) for F in flat]

        n = randint(1, 2 * ndim)
        M = rvec(n).H
        M2 = rvec(n).H

        E = Matrix.eye(ndim)

        K1 = (numpy.random.randn())
        K2 = (numpy.random.randn())

        N = randint(-5, 5)

        return {
            'ndim': ndim,
            'A': A,
            'B': B,
            'C': C,
            'M': M,
            'M2': M2,
            'E': E,
            'K1': K1,
            'K2': K2,
            'N': N,
        }
Beispiel #5
0
def main():
    M1=Mvn.rand(2)    
    M2=Mvn.rand(2)    
    
    data1 = M1.sample(100)
    data2 = M2.sample(100)
    
    M1 = Mvn.fromData(data1)
    M2 = Mvn.fromData(data2)
    M3 = Mvn.fromData([M1,M2])
    
    data3 = Matrix.stack([[data1],[data2]])
        
    assert M3 == Mvn.fromData(data3)

    A=pylab.gca()

    M3.plot(A,facecolor='m',minalpha=0.1,zorder = -1)
    
    M1.plot(A,facecolor='b',minalpha = 0.1,zorder = 0)
    M2.plot(A,facecolor='r',minalpha = 0.1,zorder = 1)

    pylab.scatter(data1[:,0],data1[:,1],facecolor='b',zorder = 2)
    pylab.scatter(data2[:,0],data2[:,1],facecolor='r',zorder = 3)
    

    pylab.show()
Beispiel #6
0
def newAx(fig, transform = Matrix.eye(2)):
    fig.clear()

    axgrid = GridSpec(1, 1)
    
    #get axes
    ax = pylab.subplot(
        axgrid[:, :],
        projection = 'custom', 
        transform = transform,
    )
    
    ax.autoscale(False)

#    ax.set_xticks(numpy.arange(-10., 35., 5.))
#    ax.set_yticks(numpy.arange(-10., 35., 5.))
    
    ax.set_xlim([-5, 20])
    ax.set_ylim([-5, 10])    
    
    ax.xaxis.set_major_locator(MultipleLocator(5))

    ax.grid('on')
    drawLegend(ax)    
    
    return ax
Beispiel #7
0
def newAx(fig, transform=Matrix.eye(2)):
    fig.clear()

    axgrid = GridSpec(1, 1)

    #get axes
    ax = pylab.subplot(
        axgrid[:, :],
        projection='custom',
        transform=transform,
    )

    ax.autoscale(False)

    #    ax.set_xticks(numpy.arange(-10., 35., 5.))
    #    ax.set_yticks(numpy.arange(-10., 35., 5.))

    ax.set_xlim([-5, 20])
    ax.set_ylim([-5, 10])

    ax.xaxis.set_major_locator(MultipleLocator(5))

    ax.grid('on')
    drawLegend(ax)

    return ax
Beispiel #8
0
    def __init__(
        self,
        vectors=Matrix.eye,
        mean=numpy.zeros,
    ):
        mean = mean if callable(mean) else numpy.array(mean).flatten()[None, :]
        vectors = vectors if callable(vectors) else Matrix(vectors)

        stack = helpers.autoshape([
            [vectors],
            [mean],
        ], default=1)

        #unpack the stack into the object's parameters
        self.vectors = Matrix(numpy.real_if_close(stack[0, 0]))
        self.mean = Matrix(numpy.real_if_close(stack[1, 0]))
Beispiel #9
0
def main():
    M1 = Mvn.rand(2)
    M2 = Mvn.rand(2)

    data1 = M1.sample(100)
    data2 = M2.sample(100)

    M1 = Mvn.fromData(data1)
    M2 = Mvn.fromData(data2)
    M3 = Mvn.fromData([M1, M2])

    data3 = Matrix.stack([[data1], [data2]])

    assert M3 == Mvn.fromData(data3)

    A = pylab.gca()

    M3.plot(A, facecolor='m', minalpha=0.1, zorder=-1)

    M1.plot(A, facecolor='b', minalpha=0.1, zorder=0)
    M2.plot(A, facecolor='r', minalpha=0.1, zorder=1)

    pylab.scatter(data1[:, 0], data1[:, 1], facecolor='b', zorder=2)
    pylab.scatter(data2[:, 0], data2[:, 1], facecolor='r', zorder=3)

    pylab.show()
Beispiel #10
0
def main():

    #generate data
    N = 75
    red = Mvn.rand(2)
    blue = Matrix(red.sample(N))
    red = Mvn.fromData(blue)

    #create figure
    fig = pylab.figure(1, figsize=(7, 7))
    fig.suptitle('Mahalabois Distance')

    ax = setupAxes(red.transform(-1))

    # scatter plot of the origional data
    scatter(ax[0, 0], red, blue)

    # scatter plot of the normalized data
    scatter(ax[1, 0], red / red, blue / red)

    # draw the cumulative distribution
    cumulative(ax[0, 1], red, blue)

    # draw the histogram
    hist(red.mah().pdf, red.mah(blue), ax[1, 1])

    ax[0, 1].set_xlim([0, None])
    ax[1, 1].set_ylim([0, None])

    pylab.show()
Beispiel #11
0
    def reverseTransform(center, M, x, y):

        center = center.squeeze()

        x = Matrix(x)
        y = Matrix(y)
        xy = numpy.hstack([x.T, y.T])
        xy = xy - center[None, :]

        xy = numpy.array(xy * M)

        mags = (numpy.array(xy)**2).sum(1)[:, None]**0.5
        dirs = xy / mags

        xy = dirs * mags**0.5 + center

        return xy[:, 0].squeeze(), xy[:, 1].squeeze()
Beispiel #12
0
    def makeObjects(flat=None, ndim=None, seed=None):        
        if seed is None:
            seed = randint(1, 1e6)
            
        numpy.random.seed(seed)
        randn = numpy.random.randn
    
        if ndim is None:
            ndim = randint(0, 20)
            
        shapes = {
            None:lambda :max(randint(-ndim, ndim), 0),
            True:lambda :randint(1, ndim),
            False:lambda :0,
        }
    
        triple = lambda x:[x, x, x]
        
        if flat in shapes:
            flat = [item() for item in triple(shapes[flat])]

        elif isinstance(flat, int):
            flat = triple(flat)
        
        assert all(f <= ndim for f in flat), "flatness can't be larger than ndim"
        
        rvec = lambda n=1, ndim=ndim:Matrix(randn(n ,ndim))
                
        A,B,C = [
            Mvn.rand([ndim-F, ndim])
            for F in flat
        ]
    
    
        n = randint(1, 2*ndim)
        M = rvec(n).H
        M2 = rvec(n).H    
    
        E = Matrix.eye(ndim)
        
        K1 = (numpy.random.randn())
        K2 = (numpy.random.randn())
    
        N = randint(-5, 5)
        
        return {
            'ndim' : ndim,
            'A' : A,
            'B' : B,
            'C' : C,
            'M' : M,
            'M2' : M2,
            'E' : E,
            'K1' : K1,
            'K2' : K2,
            'N' : N,
        }
Beispiel #13
0
    def __init__(
        self,
        vectors= Matrix.eye,
        mean= numpy.zeros,
    ):
        mean = mean if callable(mean) else numpy.array(mean).flatten()[None, :]
        vectors = vectors if callable(vectors) else Matrix(vectors)

        stack=helpers.autoshape([
            [vectors],
            [mean   ],
        ],default= 1)
        
        #unpack the stack into the object's parameters
        self.vectors = Matrix(numpy.real_if_close(stack[0, 0]))
        self.mean    = Matrix(numpy.real_if_close(stack[1, 0]))
Beispiel #14
0
    def __init__(self,*args,**kwargs):
        """
        use the optional key-word arg 'transform' to supply a 
        2x2 transform-matrix
        """
        try:
            transform = kwargs.pop('transform')
        except KeyError:
            transform = Matrix.eye(2)
            
        if isinstance(transform,GridHelperCurveLinear):
            assert 'Itransform' not in kwargs,(
                'no Itransform when transform is a %s' % 
                type(transform)            
            )
            grid_helper = transform
        elif callable(transform):
            grid_helper =  GridHelperCurveLinear([
                transform,
                kwargs.pop('Itransform')
            ])
        else:
            transform = Matrix(transform)

            try:
                Itransform = kwargs.pop('Itransform')
            except KeyError:
                Itransform = transform**(-1)
            
            grid_helper =  GridHelperCurveLinear([
                self.makeTransform(transform),
                self.makeTransform(Itransform)
            ])
            
            kwargs['grid_helper']=grid_helper
        mpl_toolkits.axisartist.Axes.__init__(self,*args,**kwargs)
Beispiel #15
0
 def makeTransform(self, M, x, y):
     x = Matrix(x)
     y = Matrix(y)
     xy = numpy.hstack([x.T, y.T])
     xy = xy * M
     return xy[:, 0].squeeze(), xy[:, 1].squeeze()
Beispiel #16
0
class Plane(object):
    """
    plane class, meant to (eventually) factor out some code, 
    and utility from the Mvn class
    """

    rtol = 1e-5
    """
    relative tolerence
    
    see :py:func:`mvn.helpers.approx`
    """

    atol = 1e-8
    """
    absolute tolerence
    
    see :py:func:`mvn.helpers.approx`
    """
    def __init__(
        self,
        vectors=Matrix.eye,
        mean=numpy.zeros,
    ):
        mean = mean if callable(mean) else numpy.array(mean).flatten()[None, :]
        vectors = vectors if callable(vectors) else Matrix(vectors)

        stack = helpers.autoshape([
            [vectors],
            [mean],
        ], default=1)

        #unpack the stack into the object's parameters
        self.vectors = Matrix(numpy.real_if_close(stack[0, 0]))
        self.mean = Matrix(numpy.real_if_close(stack[1, 0]))

    def __repr__(self):
        """
        print self
        """
        return '\n'.join([
            '%s(' % self.__class__.__name__,
            '    mean=',
            ('        %r,' % self.mean).replace('\n', '\n' + 8 * ' '),
            '    vectors=',
            ('        %r' % self.vectors).replace('\n', '\n' + 8 * ' '),
            ')',
        ])

    __str__ = __repr__

    def __getitem__(self, index):
        """
        project the plane into the selected dimensions
        """
        assert not isinstance(index, tuple), '1-dimensional index only'

        return type(self)(
            mean=self.mean[:, index],
            vectors=self.vectors[:, index],
        )

    copy = decorate.automath.Automath.__dict__['copy']

    @property
    def shape(self):
        """
        get the shape of the vectors,the first element is the number of 
        vectors, the second is their lengths: the number of dimensions of 
        the space they are embedded in
            
        >>> assert A.vectors.shape == A.shape
        >>> assert (A.vectors.shape[0],A.mean.size)==A.shape
        >>> assert A.shape[0]==A.rank
        >>> assert A.shape[1]==A.ndim
        """
        return self.vectors.shape

    @property
    def rank(self):
        """
        get the number of dimensions of the space covered by the mvn
        
        >>> assert A.rank == A.vectors.shape[0]
        """
        return self.vectors.shape[0]

    @property
    def ndim(self):
        """
        get the number of dimensions of the space the mvn exists in
        
        >>> assert A.ndim==A.mean.size==A.mean.shape[1]
        >>> assert A.ndim==A.vectors.shape[1]
        """
        return self.mean.size

    @property
    def flat(self):
        """
        >>> assert bool(A.flat) == bool(A.vectors.shape[1] > A.vectors.shape[0]) 
        """
        return max(self.vectors.shape[1] - self.vectors.shape[0], 0)

    def __nonzero__(self):
        """
        True if not empty
        
        >>> assert A
        >>> assert bool(A) == bool(A.ndim)
        >>> assert not A[:0]
        """
        return bool(self.ndim)

    @decorate.MultiMethod
    def __add__(self, other):
        """
        add two planes together
        """
        raise TypeError("No Apropriate Method Found")

    @__add__.register(Plane)
    def __add__(self, other):
        result = self.copy()
        result.mean = result.mean + other
        return result

    @__add__.register(Plane, Plane)
    def __add__(self, other):
        return Plane(mean=self.mean + other.mean,
                     vectors=numpy.vstack([self.vectors, other.vectors]))

    def approx(self, *args):
        return helpers.approx(*args, atol=self.atol, rtol=self.rtol)

    def __and__(self, other):
        """
        plane intersection
        """
        Nself = self.vectors.null()
        Nother = other.vectors.null()

        #and stack them
        null = numpy.vstack([
            Nself,
            Nother,
        ])

        mean = numpy.hstack([self.mean, other.mean])

        #get length of the component of the means along each null vector
        r = numpy.vstack([Nself * self.mean.H, Nother * other.mean.H])

        mean = (numpy.linalg.pinv(null, 1e-6) * r).H

        return type(self)(vectors=null.null(), mean=mean)
Beispiel #17
0
def square(vectors, var=None, full=False):
    """
    calculates the eigen-vectors and eigen-values of the covariance matrix that 
    would be produced by multiplying out A.var*numpy.array(A.vectors.H)*A.vectors 
    without necessarily calculating the covariance matrix itself.

    It is also setup to handle vectors with infinite variances.
    origionally the idea came from these two line on wikipedia:

    http://en.wikipedia.org/wiki/Square_root_of_a_matrix:
        '''if T = A*A.H = B*B.H, then there exists a unitary U s.t. A = B*U'''

    http://en.wikipedia.org/wiki/Unitary_matrix
        '''In mathematics, a unitary matrix is an nxn complex matrix U satisfying 
        the condition U.H*U = I, U*U.H = I'''

    *********************************
    A better description for all this is the compact singular value decomposition.
    http://en.wikipedia.org/wiki/Singular_value_decomposition#Compact_SVD

    but here I only need one of the two sets of vectors, so I actually calculate the smaller of 
    the two possible covariance marixes and, and then it's eigen-stuff.
    """
    if var is None:
        var = numpy.ones(vectors.shape[0])

    finite = numpy.isfinite(var) & numpy.isfinite(vectors.asarray()).all(1)

    infinite = ~finite

    Ivar = numpy.array([])
    Ivectors = Matrix(numpy.zeros((0, vectors.shape[1])))

    if infinite.any():
        #square up the infinite vectors
        #Ivar is unused

        (Ivar, Ivectors) = _subSquare(vectors=vectors[infinite, :],
                                      var=numpy.ones_like(var[infinite]),
                                      full=True)

        #take the finite variances and vectors
        var = var[~infinite]
        vectors = vectors[~infinite, :]

        small = helpers.approx(Ivar)

        Ivar = Ivar[~small]

        SIvectors = Ivectors[~small, :]

        if vectors.any():
            #revove the component parallel to each infinite vector
            vectors = vectors - vectors * SIvectors.H * SIvectors
        elif var.size:
            num = helpers.approx(var).sum()
            #gab the extra vectors here, because if the vectors are all zeros eig will fail
            vectors = Ivectors[small, :]
            vectors = vectors[:num, :]

        Ivectors = SIvectors

    if var.size:
        (var, vectors) = _subSquare(vectors, var)

    if Ivar.size and var.size:
        #sort the finite variances
        order = numpy.argsort(abs(var))
        var = var[order]
        vectors = vectors[order, :]

        #if there are more vectors than dimensions
        kill = var.size + Ivar.size - vectors.shape[1]
        if kill > 0:
            #squeeze the vectors with the smallest variances
            var = var[kill:]
            vectors = vectors[kill:, :]

    return (numpy.concatenate((var, numpy.inf * numpy.ones_like(Ivar))),
            numpy.vstack([vectors, Ivectors]))
Beispiel #18
0
    #create figure
    fig = pylab.figure(figsize=(6, 6))

    ## kalman filter parameters

    #the actual, hidden state
    actual = numpy.array([[0, 5]])

    #the sensor
    sensor = Mvn(vectors=[[1, 0], [0, 1]], var=[1, numpy.inf])

    #the system noise
    noise = Mvn(vectors=[[1, 0], [0, 1]], var=numpy.array([0.5, 1])**2)

    #the shear transform to move the system forward
    transform = Matrix([[1, 0], [0.5, 1]])

    filtered = sensor.measure(actual)

    ## initial plot

    ax = newAx(fig)

    #plot the initial actual position
    ax.plot(actual[:, 0], actual[:, 1], **actualParams)
    ax.set_title('Kalman Filtering: Start')
    pylab.xlabel('Position')
    pylab.ylabel('Velocity')
    P.publish(fig)

    #measure the actual position, and plot the measurment
Beispiel #19
0
class Plane(object):
    """
    plane class, meant to (eventually) factor out some code, 
    and utility from the Mvn class
    """
    
    rtol = 1e-5
    """
    relative tolerence
    
    see :py:func:`mvn.helpers.approx`
    """
    
    atol = 1e-8
    """
    absolute tolerence
    
    see :py:func:`mvn.helpers.approx`
    """
    
    
    def __init__(
        self,
        vectors= Matrix.eye,
        mean= numpy.zeros,
    ):
        mean = mean if callable(mean) else numpy.array(mean).flatten()[None, :]
        vectors = vectors if callable(vectors) else Matrix(vectors)

        stack=helpers.autoshape([
            [vectors],
            [mean   ],
        ],default= 1)
        
        #unpack the stack into the object's parameters
        self.vectors = Matrix(numpy.real_if_close(stack[0, 0]))
        self.mean    = Matrix(numpy.real_if_close(stack[1, 0]))

    def __repr__(self):
        """
        print self
        """
        return '\n'.join([
            '%s(' % self.__class__.__name__,
            '    mean=',
           ('        %r,' % self.mean).replace('\n', '\n'+8*' '),
            '    vectors=',
           ('        %r' % self.vectors).replace('\n', '\n'+8*' '),
            ')',
        ])

    __str__ = __repr__
    
    def __getitem__(self, index):
        """
        project the plane into the selected dimensions
        """
        assert not isinstance(index, tuple),'1-dimensional index only'
        
        return type(self)(
            mean= self.mean[:, index],
            vectors= self.vectors[:, index],
        )

    copy = decorate.automath.Automath.__dict__['copy']

    @property
    def shape(self):
        """
        get the shape of the vectors,the first element is the number of 
        vectors, the second is their lengths: the number of dimensions of 
        the space they are embedded in
            
        >>> assert A.vectors.shape == A.shape
        >>> assert (A.vectors.shape[0],A.mean.size)==A.shape
        >>> assert A.shape[0]==A.rank
        >>> assert A.shape[1]==A.ndim
        """
        return self.vectors.shape
            
    @property
    def rank(self):
        """
        get the number of dimensions of the space covered by the mvn
        
        >>> assert A.rank == A.vectors.shape[0]
        """
        return self.vectors.shape[0]

    @property
    def ndim(self):
        """
        get the number of dimensions of the space the mvn exists in
        
        >>> assert A.ndim==A.mean.size==A.mean.shape[1]
        >>> assert A.ndim==A.vectors.shape[1]
        """
        return self.mean.size
            
    @property
    def flat(self):
        """
        >>> assert bool(A.flat) == bool(A.vectors.shape[1] > A.vectors.shape[0]) 
        """
        return max(self.vectors.shape[1] - self.vectors.shape[0], 0)
            
    def __nonzero__(self):
        """
        True if not empty
        
        >>> assert A
        >>> assert bool(A) == bool(A.ndim)
        >>> assert not A[:0]
        """
        return bool(self.ndim)

    @decorate.MultiMethod
    def __add__(self, other):
        """
        add two planes together
        """
        raise TypeError("No Apropriate Method Found")

    @__add__.register(Plane)
    def __add__(self, other):
        result = self.copy()
        result.mean = result.mean+other
        return result

    @__add__.register(Plane, Plane)
    def __add__(self, other):
        return Plane(
            mean = self.mean+other.mean,
            vectors = numpy.vstack([self.vectors, other.vectors])
        )

        
    def approx(self, *args):
        return helpers.approx(*args, atol = self.atol, rtol = self.rtol)


    def __and__(self, other):
        """
        plane intersection
        """
        Nself = self.vectors.null()
        Nother = other.vectors.null()

        #and stack them
        null = numpy.vstack([
            Nself,
            Nother,
        ])

        mean = numpy.hstack([self.mean, other.mean])

        #get length of the component of the means along each null vector
        r = numpy.vstack([Nself*self.mean.H, Nother*other.mean.H])

        
        mean = (numpy.linalg.pinv(null, 1e-6)*r).H

        return type(self)(vectors= null.null(), mean=mean)